YNAO OpenIR  > 射电天文研究组
Radio frequency interference detection using efficient multiscale convolutional attention Unet
Gu, Fei1; Hao LF(郝龙飞)2; Liang, Bo1; Feng, Song1; Wei, Shoulin1; Dai, Wei1; Xu YH(徐永华)2; Li ZX(李志玄)2; Dao, Yihang1
发表期刊MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
2024-03-23
卷号529期号:4页码:4719-4727
DOI10.1093/mnras/stae868
产权排序第2完成单位
收录类别SCI ; EI
关键词methods: data analysis techniques: image processing
摘要Studying the Universe through radio telescope observation is crucial. However, radio telescopes capture not only signals from the universe but also various interfering signals, known as radio frequency interference (RFI). The presence of RFI can significantly impact data analysis. Ensuring the accuracy, reliability, and scientific integrity of research findings by detecting and mitigating or eliminating RFI in observational data, presents a persistent challenge in radio astronomy. In this study, we proposed a novel deep learning model called EMSCA-UNet for RFI detection. The model employs multiscale convolutional operations to extract RFI features of various scale sizes. Additionally, an attention mechanism is utilized to assign different weights to the extracted RFI feature maps, enabling the model to focus on vital features for RFI detection. We evaluated the performance of the model using real data observed from the 40 m radio telescope at Yunnan Observatory. Furthermore, we compared our results to other models, including U-Net, RFI-Net, and R-Net, using four commonly employed evaluation metrics: precision, recall, F1 score, and IoU. The results demonstrate that our model outperforms the other models on all evaluation metrics, achieving an average improvement of approximately 5 per cent compared to U-Net. Our model not only enhances the accuracy and comprehensiveness of RFI detection but also provides more detailed edge detection while minimizing the loss of useful signals.
资助项目National Key Research and Development Program[2020SKA0110300]; National Key Research and Development Program[2020SKA0120100]; National Key Research and Development Program of China[12063003]; National Key Research and Development Program of China[12073076]; National Natural Science Foundation of China; Yunnan Ten Thousand Talents Plan Young Elite Talents
项目资助者National Key Research and Development Program[2020SKA0110300, 2020SKA0120100] ; National Key Research and Development Program of China[12063003, 12073076] ; National Natural Science Foundation of China ; Yunnan Ten Thousand Talents Plan Young Elite Talents
语种英语
学科领域天文学 ; 射电天文学
文章类型Article
出版者OXFORD UNIV PRESS
出版地GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
ISSN0035-8711
URL查看原文
WOS记录号WOS:001208268900025
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]MITIGATION
EI入藏号20241816026984
EI主题词Data handling
EI分类号461.4 Ergonomics and Human Factors Engineering - 657.2 Extraterrestrial Physics and Stellar Phenomena - 701.1 Electricity: Basic Concepts and Phenomena - 711 Electromagnetic Waves - 716.1 Information Theory and Signal Processing - 716.3 Radio Systems and Equipment - 723.2 Data Processing and Image Processing - 903.1 Information Sources and Analysis
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/27151
专题射电天文研究组
作者单位1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China;
2.Yunnan Observatories, Chinese Academy of Science, Kunming 650000, Yunnan, China
推荐引用方式
GB/T 7714
Gu, Fei,Hao LF,Liang, Bo,et al. Radio frequency interference detection using efficient multiscale convolutional attention Unet[J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,2024,529(4):4719-4727.
APA Gu, Fei.,郝龙飞.,Liang, Bo.,Feng, Song.,Wei, Shoulin.,...&Dao, Yihang.(2024).Radio frequency interference detection using efficient multiscale convolutional attention Unet.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,529(4),4719-4727.
MLA Gu, Fei,et al."Radio frequency interference detection using efficient multiscale convolutional attention Unet".MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 529.4(2024):4719-4727.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Radio frequency inte(1045KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gu, Fei]的文章
[郝龙飞]的文章
[Liang, Bo]的文章
百度学术
百度学术中相似的文章
[Gu, Fei]的文章
[郝龙飞]的文章
[Liang, Bo]的文章
必应学术
必应学术中相似的文章
[Gu, Fei]的文章
[郝龙飞]的文章
[Liang, Bo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Radio frequency interference detection using efficient multiscale convolutional attention UNet.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。