Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing | |
Li H(李徽)1,2; Li RW(李荣旺)1,3; Shu P(舒鹏)1; Li YQ(李语强)1,3 | |
发表期刊 | RESEARCH IN ASTRONOMY AND ASTROPHYSICS |
2024-04-01 | |
卷号 | 24期号:4 |
DOI | 10.1088/1674-4527/ad339e |
产权排序 | 第1完成单位 |
收录类别 | SCI |
关键词 | techniques: image processing methods: data analysis light pollution |
摘要 | Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal. Analyzing light curves to determine attitude is the most commonly used method. In photometric observations, outliers may exist in the obtained light curves due to various reasons. Therefore, preprocessing is required to remove these outliers to obtain high quality light curves. Through statistical analysis, the reasons leading to outliers can be categorized into two main types: first, the brightness of the object significantly increases due to the passage of a star nearby, referred to as stellar contamination, and second, the brightness markedly decreases due to cloudy cover, referred to as cloudy contamination. The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive. However, we propose the utilization of machine learning methods as a substitute. Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination, achieving F1 scores of 1.00 and 0.98 on a test set, respectively. We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine, then conduct comparative analyses of the results. |
资助项目 | National Natural Science Foundation of China (NSFC)[12373086]; National Natural Science Foundation of China (NSFC)[12303082]; CAS Light of West China Program, Yunnan Revitalization Talent Support Program in Yunnan Province, National Key R&D Program of China[2022YFC2203800] |
项目资助者 | National Natural Science Foundation of China (NSFC)[12373086, 12303082] ; CAS Light of West China Program, Yunnan Revitalization Talent Support Program in Yunnan Province, National Key R&D Program of China[2022YFC2203800] |
语种 | 英语 |
学科领域 | 天文学 ; 天文学其他学科 ; 计算机科学技术 ; 人工智能 |
文章类型 | Article |
出版者 | NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES |
出版地 | 20A DATUN RD, CHAOYANG, BEIJING, 100101, PEOPLES R CHINA |
ISSN | 1674-4527 |
URL | 查看原文 |
WOS记录号 | WOS:001207482400001 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/27126 |
专题 | 应用天文研究组 |
作者单位 | 1.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China; [email protected]; 2.University of Chinese Academy of Sciences, Beijing 100049, China; 3.Key Laboratory of Space Object and Debris Observation, Chinese Academy of Sciences, Nanjing 210023, China |
第一作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | Li H,Li RW,Shu P,et al. Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2024,24(4). |
APA | 李徽,李荣旺,舒鹏,&李语强.(2024).Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,24(4). |
MLA | 李徽,et al."Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 24.4(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Machine Learning-bas(1824KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[李徽]的文章 |
[李荣旺]的文章 |
[舒鹏]的文章 |
百度学术 |
百度学术中相似的文章 |
[李徽]的文章 |
[李荣旺]的文章 |
[舒鹏]的文章 |
必应学术 |
必应学术中相似的文章 |
[李徽]的文章 |
[李荣旺]的文章 |
[舒鹏]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论