YNAO OpenIR  > 应用天文研究组
Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing
Li H(李徽)1,2; Li RW(李荣旺)1,3; Shu P(舒鹏)1; Li YQ(李语强)1,3
发表期刊RESEARCH IN ASTRONOMY AND ASTROPHYSICS
2024-04-01
卷号24期号:4
DOI10.1088/1674-4527/ad339e
产权排序第1完成单位
收录类别SCI
关键词techniques: image processing methods: data analysis light pollution
摘要Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal. Analyzing light curves to determine attitude is the most commonly used method. In photometric observations, outliers may exist in the obtained light curves due to various reasons. Therefore, preprocessing is required to remove these outliers to obtain high quality light curves. Through statistical analysis, the reasons leading to outliers can be categorized into two main types: first, the brightness of the object significantly increases due to the passage of a star nearby, referred to as stellar contamination, and second, the brightness markedly decreases due to cloudy cover, referred to as cloudy contamination. The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive. However, we propose the utilization of machine learning methods as a substitute. Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination, achieving F1 scores of 1.00 and 0.98 on a test set, respectively. We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine, then conduct comparative analyses of the results.
资助项目National Natural Science Foundation of China (NSFC)[12373086]; National Natural Science Foundation of China (NSFC)[12303082]; CAS Light of West China Program, Yunnan Revitalization Talent Support Program in Yunnan Province, National Key R&D Program of China[2022YFC2203800]
项目资助者National Natural Science Foundation of China (NSFC)[12373086, 12303082] ; CAS Light of West China Program, Yunnan Revitalization Talent Support Program in Yunnan Province, National Key R&D Program of China[2022YFC2203800]
语种英语
学科领域天文学 ; 天文学其他学科 ; 计算机科学技术 ; 人工智能
文章类型Article
出版者NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES
出版地20A DATUN RD, CHAOYANG, BEIJING, 100101, PEOPLES R CHINA
ISSN1674-4527
URL查看原文
WOS记录号WOS:001207482400001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/27126
专题应用天文研究组
作者单位1.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China; [email protected];
2.University of Chinese Academy of Sciences, Beijing 100049, China;
3.Key Laboratory of Space Object and Debris Observation, Chinese Academy of Sciences, Nanjing 210023, China
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
Li H,Li RW,Shu P,et al. Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2024,24(4).
APA 李徽,李荣旺,舒鹏,&李语强.(2024).Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,24(4).
MLA 李徽,et al."Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 24.4(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Machine Learning-bas(1824KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李徽]的文章
[李荣旺]的文章
[舒鹏]的文章
百度学术
百度学术中相似的文章
[李徽]的文章
[李荣旺]的文章
[舒鹏]的文章
必应学术
必应学术中相似的文章
[李徽]的文章
[李荣旺]的文章
[舒鹏]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。