YNAO OpenIR  > 射电天文研究组
Galaxy Morphological Classification of the Legacy Surveys with Deformable Convolutional Neural Networks
Wei,Shoulin1,2; Lu,Wei1; Dai,Wei1; Liang,Bo1; Hao LF(郝龙飞)3; Zhang,Zhijian4; Zhang,Xiaoli1
发表期刊The Astronomical Journal
2023-12-21
卷号167期号:1
DOI10.3847/1538-3881/ad10ab
产权排序第3完成单位
收录类别SCI
摘要

Abstract The ongoing and forthcoming surveys will result in an unprecedented increase in the number of observed galaxies. As a result, data-driven techniques are now the primary methods for analyzing and interpreting this vast amount of information. While deep learning using computer vision has been the most effective for galaxy morphology recognition, there are still challenges in efficiently representing spatial and multi-scale geometric features in practical survey images. In this paper, we incorporate layer attention and deformable convolution into a convolutional neural network (CNN) to bolster its spatial feature and geometric transformation modeling capabilities. Our method was trained and tested on seven classifications of a data set from Galaxy Zoo DECaLS, achieving a classification accuracy of 94.5%, precision of 94.4%, recall of 94.2%, and an F1 score of 94.3% using macroscopic averaging. Our model outperforms traditional CNNs, offering slightly better results while substantially reducing the number of parameters and training time. We applied our method to Data Release 9 of the Legacy Surveys and present a galaxy morphological classification catalog including approximately 71 million galaxies and the probability of each galaxy to be categorized as Round, In-between, Cigar-shaped, Edge-on, Spiral, Irregular, and Error. The code detailing our proposed model and the catalog are publicly available in doi:10.5281/zenodo.10018255 and GitHub (https://github.com/kustcn/legacy_galaxy).

语种英语
学科领域天文学
出版者The American Astronomical Society
ISSN0004-6256
URL查看原文
WOS记录号IOP:aj_167_1_29
引用统计
文献类型期刊论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/26639
专题射电天文研究组
通讯作者Dai,Wei
作者单位1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China; [email protected]
2.Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
3.Yunnan Observatories, National Astronomical Observatories, Chinese Academy of Sciences, Kunming 650011, People's Republic of China
4.Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
推荐引用方式
GB/T 7714
Wei,Shoulin,Lu,Wei,Dai,Wei,et al. Galaxy Morphological Classification of the Legacy Surveys with Deformable Convolutional Neural Networks[J]. The Astronomical Journal,2023,167(1).
APA Wei,Shoulin.,Lu,Wei.,Dai,Wei.,Liang,Bo.,Hao LF.,...&Zhang,Xiaoli.(2023).Galaxy Morphological Classification of the Legacy Surveys with Deformable Convolutional Neural Networks.The Astronomical Journal,167(1).
MLA Wei,Shoulin,et al."Galaxy Morphological Classification of the Legacy Surveys with Deformable Convolutional Neural Networks".The Astronomical Journal 167.1(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Galaxy Morphological(1563KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei,Shoulin]的文章
[Lu,Wei]的文章
[Dai,Wei]的文章
百度学术
百度学术中相似的文章
[Wei,Shoulin]的文章
[Lu,Wei]的文章
[Dai,Wei]的文章
必应学术
必应学术中相似的文章
[Wei,Shoulin]的文章
[Lu,Wei]的文章
[Dai,Wei]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Galaxy Morphological Classification of the Legacy Surveys with Deformable Convolutional Neural Networks.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。