YNAO OpenIR  > 系外行星研究组
Taxonomic Analysis of Asteroids with Artificial Neural Networks
Luo NP(罗南平)1,2; Wang XB(王晓彬)1,2,3; Gu SH(顾盛宏)1,2,3; Penttilä, Antti4; Muinonen, Karri4; Liu, Yisi5
发表期刊ASTRONOMICAL JOURNAL
2024
卷号167期号:1
DOI10.3847/1538-3881/ad0b7a
产权排序第1完成单位
收录类别SCI
摘要We study the surface composition of asteroids with visible and/or infrared spectroscopy. For example, asteroid taxonomy is based on the spectral features or multiple color indices in visible and near-infrared wavelengths. The composition of asteroids gives key information to understand their origin and evolution. However, we lack compositional information for faint asteroids due to the limits of ground-based observational instruments. In the near future, the Chinese Space Survey Telescope (CSST) will provide multiple colors and spectroscopic data for asteroids of apparent magnitude brighter than 25 and 23 mag, respectively. With the aim of analyzing the CSST spectroscopic data, we applied an algorithm using artificial neural networks (ANNs) to establish a preliminary classification model for asteroid taxonomy according to the design of the survey module of CSST. Using the SMASS II spectra and the Bus-Binzel taxonomic system, our ANN classification tool composed of five individual ANNs is constructed, and the accuracy of this classification system is higher than 92%. As the first application of our ANN tool, 64 spectra of 42 asteroids obtained by us in 2006 and 2007 with the 2.16 m telescope in the Xinglong station (Observatory Code 327) of National Astronomical Observatory of China are analyzed. The predicted labels of these spectra using our ANN tool are found to be reasonable when compared to their known taxonomic labels. Considering its accuracy and stability, our ANN tool can be applied to analyze CSST asteroid spectra in the future.
资助项目MOST divided by National Natural Science Foundation of China (NSFC)https://doi.org/10.13039/501100001809[11673063]; MOST divided by National Natural Science Foundation of China (NSFC)https://doi.org/10.13039/501100001809[12373069]; National Natural Science Foundation of China[1345115]; National Natural Science Foundation of China[1336546]; Research Council of Finland[CMS-CSST-2021-B08]; China Manned Space Project[G2021039001L]; Foreign Experts Project (FEP) of State Administration of Foreign Experts Affairs of China (SAFEA)[2021VMA0017]; Chinese Academy of Sciences President's International Fellowship Initiative (PIFI)
项目资助者MOST divided by National Natural Science Foundation of China (NSFC)https://doi.org/10.13039/501100001809[11673063, 12373069] ; National Natural Science Foundation of China[1345115, 1336546] ; Research Council of Finland[CMS-CSST-2021-B08] ; China Manned Space Project[G2021039001L] ; Foreign Experts Project (FEP) of State Administration of Foreign Experts Affairs of China (SAFEA)[2021VMA0017] ; Chinese Academy of Sciences President's International Fellowship Initiative (PIFI)
语种英语
学科领域天文学
文章类型Article
出版者IOP Publishing Ltd
出版地TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
ISSN0004-6256
URL查看原文
WOS记录号WOS:001116566700001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]SPECTROSCOPIC SURVEY ; PHASE-II ; CLASSIFICATION
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/26443
专题系外行星研究组
中国科学院天体结构与演化重点实验室
作者单位1.Yunnan Observatories, CAS, Kunming, 650216, People's Republic of China; [email protected], [email protected];
2.University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China;
3.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, People's Republic of China;
4.Department of Physics, P.O. box 64, FI-00014 University of Helsinki, Finland;
5.Deep Space Exploration Laboratory, Beijing 100043, People's Republic of China
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
Luo NP,Wang XB,Gu SH,et al. Taxonomic Analysis of Asteroids with Artificial Neural Networks[J]. ASTRONOMICAL JOURNAL,2024,167(1).
APA 罗南平,王晓彬,顾盛宏,Penttilä, Antti,Muinonen, Karri,&Liu, Yisi.(2024).Taxonomic Analysis of Asteroids with Artificial Neural Networks.ASTRONOMICAL JOURNAL,167(1).
MLA 罗南平,et al."Taxonomic Analysis of Asteroids with Artificial Neural Networks".ASTRONOMICAL JOURNAL 167.1(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Taxonomic Analysis o(3915KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[罗南平]的文章
[王晓彬]的文章
[顾盛宏]的文章
百度学术
百度学术中相似的文章
[罗南平]的文章
[王晓彬]的文章
[顾盛宏]的文章
必应学术
必应学术中相似的文章
[罗南平]的文章
[王晓彬]的文章
[顾盛宏]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Taxonomic Analysis of Asteroids with Artificial Neural Networks.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。