YNAO OpenIR  > 射电天文研究组
A novel short-term radio flux trend prediction model based on deep learning
Zheng, Yanfang1; Ling, Yi1; Li, Xuebao1; Qin, Weishu1; Dong L(董亮)2,3; Huang, Xusheng1; Li, Xuefeng1; Yan, Pengchao1; Yan, Shuainan1; Lou, Hengrui1; Ye, Hongwei1
发表期刊ASTROPHYSICS AND SPACE SCIENCE
2023-10
卷号368期号:10
DOI10.1007/s10509-023-04246-7
产权排序第2完成单位
收录类别SCI
关键词Sun Solar activity Solar radio flux
摘要Solar radio flux is an important indicator of solar activity and solar UV burst. Accurate prediction of solar radio flux plays a crucial role in preventing and mitigating the impact of solar activity on human productivity. We propose a novel approach for the first time to predict short-term radio flux trends using a bidirectional long short-term memory (BLSTM) network. This approach aims to address the unique characteristics of temporality and nonlinearity observed in solar radio flux data. Our model takes into account various frequency characteristics that impact radio flux. This allows it to learn temporal patterns within the data, ultimately enabling accurate predictions of radio flux for the next 30 minutes. The proposed method is experimentally applied to the radio flux dataset of the US Radio Solar Telescope Network (RSTN). The results show that, in most frequency bands, the BLSTM model exhibits superior prediction accuracy and greater sensitivity to peak responses compared to the LSTM model, LSTM-Attention (LSTM-A) model, BLSTM-Attention (BLSTM-A) model, and persistence model (PM). Consequently, the BLSTM model is better equipped to accurately forecast changes in radio flux for the next 30 minutes.
资助项目We would like to thank the anonymous referees for their valuable suggestions and comments, which significantly improved this work. We are grateful to the Australian Space Weather Forecasting Centre for the provision of Solar Radio data.
项目资助者We would like to thank the anonymous referees for their valuable suggestions and comments, which significantly improved this work. We are grateful to the Australian Space Weather Forecasting Centre for the provision of Solar Radio data.
语种英语
学科领域天文学
文章类型Article
出版者SPRINGER
出版地VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
ISSN0004-640X
URL查看原文
WOS记录号WOS:001090545300001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]CORONAL ROTATION ; SOLAR ; MULTIFREQUENCY
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/26422
专题射电天文研究组
作者单位1.School of Automation, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China;
2.Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, 650216, Yunnan, China;
3.Yunnan Sino-Malaysian International Joint Laboratory of HF-VHF Advanced Radio Astronomy Technology, Kunming, 650216, Yunnan, China
推荐引用方式
GB/T 7714
Zheng, Yanfang,Ling, Yi,Li, Xuebao,et al. A novel short-term radio flux trend prediction model based on deep learning[J]. ASTROPHYSICS AND SPACE SCIENCE,2023,368(10).
APA Zheng, Yanfang.,Ling, Yi.,Li, Xuebao.,Qin, Weishu.,董亮.,...&Ye, Hongwei.(2023).A novel short-term radio flux trend prediction model based on deep learning.ASTROPHYSICS AND SPACE SCIENCE,368(10).
MLA Zheng, Yanfang,et al."A novel short-term radio flux trend prediction model based on deep learning".ASTROPHYSICS AND SPACE SCIENCE 368.10(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A novel short-term r(1385KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zheng, Yanfang]的文章
[Ling, Yi]的文章
[Li, Xuebao]的文章
百度学术
百度学术中相似的文章
[Zheng, Yanfang]的文章
[Ling, Yi]的文章
[Li, Xuebao]的文章
必应学术
必应学术中相似的文章
[Zheng, Yanfang]的文章
[Ling, Yi]的文章
[Li, Xuebao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A novel short-term radio flux trend prediction model based on deep learning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。