YNAO OpenIR  > 太阳物理研究组
弱磁场区复杂暗条的三维结构及其部分爆发的研究
其他题名Investigations of 3D Structures of the Complex Filament in the Region of Weak Magnetic Field and Studies of the Filament Partly Eruption
康凯锋
学位类型博士
导师林隽
2023-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天体物理
关键词太阳活动 暗条/日珥 日冕物质抛射 耀斑 太阳磁场
摘要太阳暗条(也称日珥)由悬浮于高温、稀薄日冕大气中的磁场结构和部分电离等离子体构成,其密度/温度比周围日冕环境的高/低100倍。日冕物质抛射(CME)和耀斑是空间天气的重要驱动源,被认为和暗条爆发密切相关。但是,到目前为止,冷而密的暗条在热而薄的日冕中存在的原因,依然是个未完全解开的谜题。磁场被认为是维持暗条在日冕环境中存在的核心。因此,测量暗条的磁场以得到其三维磁场结构是理解暗条结构、演化和爆发的关键。然而,目前仅能常规测量到太阳光球的磁场,太阳上层大气的磁场测量则非常困难。在绝大多数情况下,三维日冕磁场是通过光球磁场的外推得到的。尽管常规的磁场外推方法多数情况下能较好地得到强场区暗条的磁场结构,但是对弱场区暗条则通常无能无力。本文首先利用正则化毕奥-萨伐尔定律为处于衰退且弥散的弱磁场区的一个大尺度马蹄形暗条构建出了整体三维磁场结构。发现暗条内部存在三个磁场强度明显不同的区域,分别是:磁场最强的核心区、磁场最弱的外侧区以及磁场强度介于前两者之间的中间区。同时,该模型还揭示了暗条冷物质分布和磁凹陷之间的对应关系,即,暗条中较冷的物质成分更倾向于分布在磁凹陷结构中。此外,还确认了暗条倒钩的一种形成机制,认为暗条倒钩是由磁绳的形变产生的,并不一定扎根于光球。然后,本文进一步研究了该暗条的爆发过程和发生机制。我们发现,在爆发前,该暗条发生了分裂,并且分裂成了手性相同的3部分。其中,两部分位于低处,一部分位于高处。通过对分裂过程的详细分析,我们认为该暗条磁绳结构的爆发前分裂是由磁绳磁场和新浮磁场之间的重联导致的。同时,就目前所知,这也是第一次明确观测到由磁绳磁场和新浮磁场之间的重联引起的爆发前磁绳分裂。在完成分裂后,该暗条发生了爆发。并且我们发现低处的两部分在爆发中存活了下来,依然留在源区域,而高处的那部分则成功爆发掉了,并产生了一个快速CME和一个C1.2级耀斑。这表明,该暗条经历了一次部分爆发。但是,这里所呈现的部分爆发观测,并不能被经典的“双层暗条”模型或“部分抛射磁绳”模型所解释。因此,该事件为新的部分爆发模型的构建提供了新的观测限制。同时,通过对爆发过程的运动学特征进行分析,以及计算背景磁场的衰减因子,我们认为灾变(或环不稳定性)是该暗条的爆发机制。
其他摘要A solar filament (also called solar prominence)is composed of a magnetic structure that floats in the hot and tenuous corona and the partially ionized plasma, which is about 100 times denser/cooler than their coronal surroundings. The coronal mass ejections (CME) and solar flares are the main driver of the space weather and always believed to be closely associated with filament eruptions. However, so far, the reason why the cool and dense filament can exist in the hot and tenuous corona is still a question that has not been fully resolved. Magnetic fields are considered to be central to maintaining filament existence in the coronal surroundings. Therefore, measuring the magnetic field of filaments to obtain their three-dimensional (3D) magnetic structure is key to better understand their structure, evolution and eruption. Unfortunately, only on the photosphere can magnetic field be routinely measured and the magnetic field in the upper solar atmosphere is very difficult to measure directly. In the most cases, the 3D coronal magnetic field is obtained by extrapolating the measured photospheric magnetic field.Though the traditional magnetic field extrapolation methods can obtain the magnetic structures of the filaments that locate in the strong field region in the most cases, they always fail for the filaments in the weak field region. In this paper, by the regularized Biot-Savart laws method, we successfully constructed a 3D overall magnetic configuration for an large-scale, horse-shoe-like filament located in a decaying, diffuse and weak field. It is found that there are three regions with significantly different magnetic field strength within it, namely, the kernel region that possesses the strongest magnetic field, the outermost region that has the weakest field, and the middle region that has an intermediate field strength. At the same time, the model reveals a correspondence between the cold materials of filament and magnetic dips, namely, the colder component of the materials is prone to distribute in the magnetic dips. In addition, a new formation mechanism of barbs is confirmed, i.e., the barbs of the filament are a natural consequence of the deformation of a magnetic flux rope (MFR) and not anchored to the photosphere.Then, the process and mechanism of the filament eruption are further investigated in this paper. We found that before the eruption, the filament split into three branches with the same chirality as it, two low-lying branches and a high-lying branch. By analysing the splitting process in detail, we suggest that the pre-eruption splitting is induced by a reconnection between the magnetic field of MFR and newly emerging magnetic field. In the mean time, to the best of our knowledge, this is the first unambiguous observational evidence for the pre-eruption splitting of MFR induced by the reconnection between the magnetic field of MFR and newly emerging magnetic field. After the splitting, the filament erupted. And we find that the two low-lying parts survived the eruption, still located in the source region, while the high-lying part successfully escaped, producing a fast CME and a C1.2 flare, indicating that the filament experienced a parital eruption.However, the observations of the partial eruption presented here can be interpreted neither by the classical “double-decker filament” model nor the “partially-expelled-flux-rope” model. Therefore, the event provides new observational constraints on the construction of the new models for partial eruptions. At the same time, by analysing the kinematics of the process of the eruption and calculating the decay index of the background magnetic fields, we suggest that catastrophe (or torus instability) is the eruption mechanism of the filament.
学科领域天文学
学科门类理学 ; 理学::天文学
页数0
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/26416
专题太阳物理研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
康凯锋. 弱磁场区复杂暗条的三维结构及其部分爆发的研究[D]. 北京. 中国科学院大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
弱磁场区复杂暗条的三维结构及其部分爆发的(27453KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[康凯锋]的文章
百度学术
百度学术中相似的文章
[康凯锋]的文章
必应学术
必应学术中相似的文章
[康凯锋]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 弱磁场区复杂暗条的三维结构及其部分爆发的研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。