YNAO OpenIR  > 大样本恒星演化研究组
Ia型超新星的共有包层星风模型研究
其他题名Research on the common-envelope wind model of Type Ia supernovae
崔英朕
学位类型博士
导师孟祥存
2023-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天体物理
关键词双星:密近双星 恒星:演化 超新星 白矮星
摘要上世纪九十年代,人们利用Ia超新星测距发现了宇宙正在加速膨胀,这意味着宇宙中存在暗能量,对人们在基础物理方面的理解提出了巨大的挑战。尽管Ia型超新星如此重要,人们对于Ia型超新星是怎么来的目前还不是很清楚(前身星问题),这可能阻碍精确宇宙学的发展。对于Ia型超新星,人们基本确定其来源于双星系统中一颗碳氧白矮星在质量达到最大稳定质量时发生的热核爆炸。但是,在这个过程中白矮星的质量是如何增长的目前还不清楚,这也就是所谓的Ia型超新星前身星问题。一种主流的观点是白矮星从一颗非简并的伴星吸积物质并在其表面稳定燃烧,从而增加其自身质量,这就是白矮星吸积模型,即单简并星模型。但是,吸积白矮星向Ia型超新星演化的具体过程目前还不清楚。前人的研究发现如果吸积率过高,白矮星的吸积过程很难稳定的进行下去,也就不会发生Ia型超新星。为了克服这个困难,人们提出了光学厚星风模型,即白矮星表面会产生一种光学厚的星风,这种星风能够自动调节吸积率的大小,以保证吸积过程的顺利进行。因此,这种光学厚星风模型一直被认为是白矮星能通过吸积物质发生Ia型超新星的物理基础。然而,近十年来,很多观测现象都与光学厚星风模型的预言之间存在矛盾,这意味着Ia型超新星的前身星中可能并没有发生过光学厚星风。共有包层星风模型是针对光学厚星风模型的上述缺点所提出的一种全新的单简并星模型即当吸积率过高时,白矮星表面会形成一个共有包层,而不是发生光学厚星风。这种模型认为如果形成共有包层,共有包层表面会发生强烈的物质损失,导致包层的密度很低,双星并合需要的时间很长,所以白矮星有足够的时间积累物质,从而发生Ia型超新星爆炸。但是共有包层表面的物质损失是如何产生的以及这种系统有什么样的观测特征还不是很清楚。在本文中,我们利用恒星演化程序MESA对上述两种单简并星模型进行了详细的流体动力学模拟研究,以解决上述提到的两种模型所遇到的主要问题。我们的主要结果如下:(1)我们重新考虑了光学厚星风的发生条件。我们发现吸积白矮星吸积的物质可以与其表面产生的光学厚星风发生相互作用,这种相互作用可以有效地阻止光学厚星风的形成。一维流体动力学对这种相互作用模拟的结果表明,光学厚星风能否发生强烈的依赖吸积率的大小。在吸积率足够高的情况下,光学厚星风很难发生。这一结果为解释光学厚星风模型与观测上的矛盾提供了一种理论基础,同时也对Ia型超新星前身星的相关研究提出了新的问题。(2)我们对正处于共有包层星风阶段的吸积白矮星双星系统进行了详细的流体动力学模拟研究,发现这种系统总是动力学不稳定的,并因此产生剧烈的物质损失,导致包层质量只能维持在大约千分之几个太阳质量。通过对内部结构的分析,我们发现这种不稳定性是由包层中氢和氦的电离复合过程所驱动的,与经典造父变星的脉动激发机制相同。在赫罗图中,公共包层星风模型的演化轨迹的中心也同样位于经典造父变星带内,这意味着在观测上这种系统可能类似于一颗经典造父变星。这个结果为将来在观测上搜寻Ia型超新星前身星提供新的理论指导。
其他摘要In the 1990s, the discovery of the accelerating expansion of the Universe, using type Ia supernova(SN Ia) as a cosmological distance indicator, implied the presence of dark energy in the Universe and posed a great challenge to the understanding of fundamental physics. Despite the importance of SNe Ia, it is still not clear how such events came from (the progenitor problem), which cold hinder the development of precise cosmological research. It is widely accepted that a SN Ia originates from a thermonuclear runaway of a carbon-oxygen white dwarf (CO WD) in a binary system when its mass reaches its maximum stable limit. However, it is not clear how the mass of WD grows during this process. One of the most popular model is that a WD accretes material from a non-degenerate companion and burns the accreted material steadily on its surface to increase its mass, which is called the single-degenerate model. However, the exact process of the evolution of accreting WDs to SNe Ia is not yet clear. Previous studies have found that if the accretion rate is too high, it is difficult for an accreting WD to increase its mass steadily, and no SN Ia will occur. In order to overcome this difficulty, the optically thick wind (OTW) model was proposed, which suggests that an OTW will be driven on the surface of the WD and can automatically adjust the accretion rate to avoid the above problem. Therefore, the optically thick wind model is considered to be the physical basis for the ability of the single-degenerate model. However, in the last decades, many observations have contradicted the predictions of the OTW model, implying that OTW may not occurre in the progenitor of SNe Ia.The common-envelope wind (CEW) model is a new version of single-degenerate model to address the above shortcomings of the OTW model. This model suggests that the common envelope will undergo strong mass loss on its surface, resulting in a low envelope density and a long time for the binary to merge, so that the WD has enough time to increase its mass and then explode, as an SN Ia. However, it is not clear how the mass loss of the common envelope arises and what the observational characteristics of such systems are.In this paper, we perform detailed hydrodynamical simulations of the above two single-degenerate models using the stellar evolution code, MESA, to address the main problems encountered in these two models. Our main results are shown as follows:(1) We reconsider the conditions for the occurrence of the OTW. We find that the accreted material of the accreting WD can interacts with the outflow on the surface of the WD, and such interaction can effectively prevent the formation of the OTW. The results of 1D hydrodynamical simulations of such interaction show that the occurrence of optically thick star winds strongly depends on the accretion rates. At a sufficiently high accretion rate, it is difficult for an OTW to occur. This result provides an explaination to the contradiction between the OTW model and observations.%, and also raises new questions related to the study of progenitor model of SNe Ia.(2) We carry out detailed hydrodynamic simulations of CEW model and find that such systems are always dynamically unstable and consequently produce dramatic mass loss, resulting in an envelope mass of only a few thousands of solar mass. By analyzing the internal structure, we find that such instability is driven by ionization-recombination processes of hydrogen and helium in the envelope, which is the same mechanism as the pulsating excitation of classical Cepheids. In the HR diagram, the center of the evolutionary trajectory of the CEW model is also located within the classical Cepheid instability strip, implying that this system may appear as periodic variable stars. This result can provide theoretical guidance for the subsequent observational search for progenitor system of SNe Ia.
学科领域天文学
学科门类理学 ; 理学::天文学
页数0
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/26408
专题大样本恒星演化研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
崔英朕. Ia型超新星的共有包层星风模型研究[D]. 北京. 中国科学院大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Ia型超新星的共有包层星风模型研究.pd(15589KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[崔英朕]的文章
百度学术
百度学术中相似的文章
[崔英朕]的文章
必应学术
必应学术中相似的文章
[崔英朕]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Ia型超新星的共有包层星风模型研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。