Galaxy morphology classification using multiscale convolution capsule network
Li, Guangping1; Xu, Tingting1; Li, Liping1; Gao, Xianjun1; Liu, Zhijing1; Cao, Jie1; Yang, Mingcun1; Zhou, Weihong1,2
发表期刊MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
2023-05-23
卷号523期号:1页码:488-497
DOI10.1093/mnras/stad854
收录类别SCI
关键词methods: data analysis techniques: image processing galaxies: general
摘要

Classification of galaxy morphology is a hot issue in astronomical research. Although significant progress has been made in the last decade in classifying galaxy morphology using deep learning technology, there are still some deficiencies in spatial feature representation and classification accuracy. In this study, we present a multiscale convolutional capsule network (MSCCN) model for the classification of galaxy morphology. First, this model improves the convolutional layers using a multibranch structure to extract the multiscale hidden features of galaxy images. In order to further explore the hidden information in the features, the multiscale features are encapsulated and fed into the capsule layer. Second, we use a sigmoid function to replace the softmax function in dynamic routing, which can enhance the robustness of MSCCN. Finally, the classification model achieves 97 per cent accuracy, 96 per cent precision, 98 per cent recall, and 97 per cent F1-score under macroscopic averaging. In addition, a more comprehensive model evaluation was accomplished in this study. We visualized the morphological features for the part of sample set that used the t-distributed stochastic neighbour embedding (t-SNE) algorithm. The results show that the model has a better generalization ability and robustness, and it can be effectively used in the galaxy morphological classification.

资助项目National Nature Science Foundation of China[61561053] ; Scientific Research Foundation Project of Yunnan Education Department[2023J0624] ; National Astronomical Observatories, Chinese Academy of Sciences and Alibaba Cloud ; Astronomical Big Data Joint Research Center
项目资助者National Nature Science Foundation of China[61561053] ; Scientific Research Foundation Project of Yunnan Education Department[2023J0624] ; National Astronomical Observatories, Chinese Academy of Sciences and Alibaba Cloud ; Astronomical Big Data Joint Research Center
语种英语
学科领域天文学 ; 星系与宇宙学
文章类型Article
出版者OXFORD UNIV PRESS
出版地GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
ISSN0035-8711
URL查看原文
WOS记录号WOS:000995754400013
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/26084
专题中国科学院天体结构与演化重点实验室
通讯作者Li, Guangping; Xu, Tingting; Zhou, Weihong
作者单位1.School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650504,China;
2.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy China of Sciences, Kunming 650011, China
推荐引用方式
GB/T 7714
Li, Guangping,Xu, Tingting,Li, Liping,et al. Galaxy morphology classification using multiscale convolution capsule network[J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,2023,523(1):488-497.
APA Li, Guangping.,Xu, Tingting.,Li, Liping.,Gao, Xianjun.,Liu, Zhijing.,...&Zhou, Weihong.(2023).Galaxy morphology classification using multiscale convolution capsule network.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,523(1),488-497.
MLA Li, Guangping,et al."Galaxy morphology classification using multiscale convolution capsule network".MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 523.1(2023):488-497.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Galaxy morphology cl(1171KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Guangping]的文章
[Xu, Tingting]的文章
[Li, Liping]的文章
百度学术
百度学术中相似的文章
[Li, Guangping]的文章
[Xu, Tingting]的文章
[Li, Liping]的文章
必应学术
必应学术中相似的文章
[Li, Guangping]的文章
[Xu, Tingting]的文章
[Li, Liping]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Galaxy morphology classification using multiscale convolution capsule network.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。