Institutional Repository System Of Yunnan Observatories, CAS
Galaxy morphology classification using multiscale convolution capsule network | |
Li, Guangping1; Xu, Tingting1; Li, Liping1; Gao, Xianjun1; Liu, Zhijing1; Cao, Jie1; Yang, Mingcun1; Zhou, Weihong1,2 | |
发表期刊 | MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY |
2023-05-23 | |
卷号 | 523期号:1页码:488-497 |
DOI | 10.1093/mnras/stad854 |
收录类别 | SCI |
关键词 | methods: data analysis techniques: image processing galaxies: general |
摘要 | Classification of galaxy morphology is a hot issue in astronomical research. Although significant progress has been made in the last decade in classifying galaxy morphology using deep learning technology, there are still some deficiencies in spatial feature representation and classification accuracy. In this study, we present a multiscale convolutional capsule network (MSCCN) model for the classification of galaxy morphology. First, this model improves the convolutional layers using a multibranch structure to extract the multiscale hidden features of galaxy images. In order to further explore the hidden information in the features, the multiscale features are encapsulated and fed into the capsule layer. Second, we use a sigmoid function to replace the softmax function in dynamic routing, which can enhance the robustness of MSCCN. Finally, the classification model achieves 97 per cent accuracy, 96 per cent precision, 98 per cent recall, and 97 per cent F1-score under macroscopic averaging. In addition, a more comprehensive model evaluation was accomplished in this study. We visualized the morphological features for the part of sample set that used the t-distributed stochastic neighbour embedding (t-SNE) algorithm. The results show that the model has a better generalization ability and robustness, and it can be effectively used in the galaxy morphological classification. |
资助项目 | National Nature Science Foundation of China[61561053] ; Scientific Research Foundation Project of Yunnan Education Department[2023J0624] ; National Astronomical Observatories, Chinese Academy of Sciences and Alibaba Cloud ; Astronomical Big Data Joint Research Center |
项目资助者 | National Nature Science Foundation of China[61561053] ; Scientific Research Foundation Project of Yunnan Education Department[2023J0624] ; National Astronomical Observatories, Chinese Academy of Sciences and Alibaba Cloud ; Astronomical Big Data Joint Research Center |
语种 | 英语 |
学科领域 | 天文学 ; 星系与宇宙学 |
文章类型 | Article |
出版者 | OXFORD UNIV PRESS |
出版地 | GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND |
ISSN | 0035-8711 |
URL | 查看原文 |
WOS记录号 | WOS:000995754400013 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/26084 |
专题 | 中国科学院天体结构与演化重点实验室 |
通讯作者 | Li, Guangping; Xu, Tingting; Zhou, Weihong |
作者单位 | 1.School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650504,China; 2.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy China of Sciences, Kunming 650011, China |
推荐引用方式 GB/T 7714 | Li, Guangping,Xu, Tingting,Li, Liping,et al. Galaxy morphology classification using multiscale convolution capsule network[J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,2023,523(1):488-497. |
APA | Li, Guangping.,Xu, Tingting.,Li, Liping.,Gao, Xianjun.,Liu, Zhijing.,...&Zhou, Weihong.(2023).Galaxy morphology classification using multiscale convolution capsule network.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,523(1),488-497. |
MLA | Li, Guangping,et al."Galaxy morphology classification using multiscale convolution capsule network".MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 523.1(2023):488-497. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Galaxy morphology cl(1171KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论