YNAO OpenIR  > 抚仙湖太阳观测和研究基地
Predicting the 25th and 26th solar cycles using the long short-term memory method
Liu, Xiaohuan1,2; Zeng, Shuguang1,2; Deng LH(邓林华)3; Zeng, Xiangyun1,2; Zheng, Sheng1,2
发表期刊PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN
2023-05
DOI10.1093/pasj/psad029
产权排序第3完成单位
收录类别SCI ; EI
关键词Method: LSTM Sun: activity Sun: solar cycle predict Sun: sunspots
摘要

Solar activities directly or indirectly affect space missions, geophysical environment, space climate, and human activities. We used the long short-term memory (LSTM) deep learning method to predict the amplitude and peak time of solar cycles (SCs) 25 and 26 by using the monthly relative sunspot number data taken from the National Astronomical Observatory of Japan (NAOJ). The dataset is divided into eight schemes of two to nine slices for training, showing that the five-slice LSTM model with root mean square error of 11.38 is the optimal model. According to the prediction, SC 25 will be about 21% stronger than SC 24, with a peak of 135.2 occurring in 2024 April. SC 26 will be similar to SC 25 and reach its peak of 135.0 in 2035 January. Our analysis results indicate that the sunspot data from NAOJ is highly credible and comparable.

项目资助者Yunnan Key Laboratory of Solar Physics and Space Science[YNSPCC202208] ; National Natural Science Foundation of China[U2031202, 12203029, 11873089] ; CAS Light in Western China Program, Yunnan Fundamental Research Projects[202301AV070007] ; Yunnan Province XingDian Talent Support Program
语种英语
学科领域天文学 ; 太阳与太阳系 ; 太阳物理学
文章类型Article; Early Access
出版者OXFORD UNIV PRESS
出版地GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
ISSN0004-6264
URL查看原文
WOS记录号WOS:000981345800001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]NEURAL-NETWORK ; AMPLITUDE ; LSTM
EI入藏号20233914780518
EI主题词Long short-term memory
EI分类号461.1 Biomedical Engineering - 657.1 Solar Energy and Phenomena - 922.2 Mathematical Statistics
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/25918
专题抚仙湖太阳观测和研究基地
通讯作者Deng LH(邓林华); Zeng, Xiangyun; Zheng, Sheng
作者单位1.Center for Astronomy and Space Sciences, China Three Gorges University, Yichang 443000, People’s Republic of China;
2.College of Science, China Three Gorges University, Yichang 443000, People’s Republic of China;
3.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, People’s Republic of China
通讯作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
Liu, Xiaohuan,Zeng, Shuguang,Deng LH,et al. Predicting the 25th and 26th solar cycles using the long short-term memory method[J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN,2023.
APA Liu, Xiaohuan,Zeng, Shuguang,Deng LH,Zeng, Xiangyun,&Zheng, Sheng.(2023).Predicting the 25th and 26th solar cycles using the long short-term memory method.PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN.
MLA Liu, Xiaohuan,et al."Predicting the 25th and 26th solar cycles using the long short-term memory method".PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN (2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Predicting the 25th (1248KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Xiaohuan]的文章
[Zeng, Shuguang]的文章
[Deng LH(邓林华)]的文章
百度学术
百度学术中相似的文章
[Liu, Xiaohuan]的文章
[Zeng, Shuguang]的文章
[Deng LH(邓林华)]的文章
必应学术
必应学术中相似的文章
[Liu, Xiaohuan]的文章
[Zeng, Shuguang]的文章
[Deng LH(邓林华)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Predicting the 25th and 26th solar cycles using the long short-term memory method.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。