YNAO OpenIR  > 选址与日冕观测组
大尺度日冕波动现象的多波段观测研究
其他题名Multiple wavelength observational investigation of the large-scale EUV waves
周新平
学位类型博士
导师刘煜 ; 申远灯
2022-07-01
学位授予单位中国科学院大学
学位授予地点北京
培养单位中国科学院云南天文台
学位专业天体物理
关键词太阳活动 极紫外波 耀斑 日冕物质抛射 冕洞
摘要全球性日冕波是日冕中壮观的扰动现象,通常和日冕物质抛射、耀斑等高能爆发有关。自1998年日冕波被EIT望远镜观测到以来,对这种单峰离散扰动的起源一直存在着较大的争议。部分学者认为日冕波是由CME驱动,而另外一部分学者认为是由耀斑激发。最近高时间空间分辨率的成像观测表明有的日冕波存在多个连续的波前,导致解释日冕波的起源又有了新的挑战。暗条、 冕腔以及冕环这些日冕结构的磁场通常很难直接测定,日冕波导致这些结构的振荡能够用来诊断这些日冕结构的磁场强度。研究日冕波动对诊断其物理本质、 激发机制、能量输运、探测磁场等有非常重要的意义。因此十分有必要对日冕波继续深入的研究,为日冕波的驱动机制和物理本质提供观测上的证据。本文主要利用AIA/SDO高时间空间分辨率的成像数据,结合EUVI/STEREO的多角度观 测,研究波列的产生机制、物理本质、传播特征以及和日冕结构(如冕洞、 活动区、冕腔、暗条、冕环)的相互作用。通常大尺度EUV波、窄QFP波列和宽QFP波列都是在单独的事件中被观测到。在第3章中报道的发生在2013年4月23日太阳西边缘的一个爆发事件中, 同时观测到了这三种类型的波。该事件为对比这三种不同的日冕波的物理参量如速度、振幅、能流密度等和研究它们的起源提供了重要的观测资料。由于该事件发生在太阳边缘,在相减像电影中可以清晰看到大尺度的EUV波前在CME泡前面传播且分离的过程。在日面上传播的大尺度EUV波和远处的冕环作用形成反射波,部分大尺度的EUV波在传播过程中被冕环捕获并限制在冕环中传播。 在该过程中大尺度EUV波先在日面上垂直于磁力线传播,被冕环捕获后沿着磁力线传播,因此该过程中应该发生了波模转换。大尺度波通常都是在CME泡前面传播,然而在该事件中CME泡内部发现了一个宽的QFP波列。该宽QFP波列在CME完全形成后才被激发。结合该宽QFP波列和CME泡在空间和时间的关系,很难用活塞式驱动机制来解释该宽QFP波列的形成机制。除了上 面介绍的两种日冕波,该事件还伴随着一个沿着磁力线传播的窄QFP波列。我们详细研究对比了这三种日冕波的驱动机制、速度、周期以及能量等物理参量, 并且根据获得的物理参数估计日冕和冕环的磁场强度。日冕环境中存在着密度和温度突变较大的区域 如冕洞和活动区。由于这 些区域具有较大的快模磁声波速度,波在传播过程中往往会受到这些区域的影响而表现出一些真波的特征,如折射和部分反射,这些特征在数值模拟中都得到 了体现。但是作为波动理论中极其重要的全反射现象到目前为止还没有被观测到。在第4章中,我们利用高时间空间分辨率的观测数据对一个起源于太阳东边缘的波列进行详细分析。这个波列沿着日面向西南方向传播,遇到一个极区冕洞时在其边界发生了反射。进一步的研究发现入射角和临界角满足全反射条件, 即入射角小于全反射临界角证明了波列在冕洞边界发生了全反射。观测到的全反射现象进一步丰富了日冕波和冕洞作用之后的表现特征。至此,波和冕洞作用 可能表现出的部分反射、折射和全反射现象全部都被观测证实。该研究结果为日冕波动的真波理论提供观测证据。日冕中单峰离散明亮的扰动通常认为是由CME侧翼膨胀驱动快模弓激波。 虽然这种解释成功的解释了许多大尺度EUV波的观测特征。但由于CME的加速相和耀斑的脉冲相基本是同时发生的,因此很难区分这两者在驱动EUV波的过程所做的贡献。最近AIA/SDO高时间空间的观测数据表明存在具有多个波前的宽QFP波列。宽QFP波列的多波前特征很难用CME侧翼膨胀驱动来解释。 在第5章中,我们研究发生在2011年02月24太阳东边缘的一个宽QFP波事件, 发现波列的很多物理参量(如速度、振幅、能流等)都和经典的大尺度EUV波一 致。同时该波列出现的时间比CME加速相开始时间稍早,但比耀斑的脉冲相开始时间稍晚。基于以上事实以及波列的周期和耀斑的周期一致,我们推测该波列应该不是被CME驱动,而是被耀斑压力脉冲激发。这为耀斑激发EUV波提供了观测上的证据。波在传播过程中如果遇到介质的物理特性突变,将会导致波前汇聚或者发散,即透镜效应。透镜效应已经被广泛的应用于光学系统,如照相机,光学显微 镜,望远镜。在第6章中,利用AIA/SDO的高时间空间分辨率成像数据,发现日冕波在穿过冕洞后表现出明显的汇聚过程。和宁静区相比,冕洞具有较高的磁场强度和较低的密度,因此冕洞区域相当于日冕波传播过程中的一个透镜系统。 当波穿过一个具有特殊轮廓的冕洞时就有可能发生汇聚作用。在数值模拟中很好的重现了观测到的透镜现象,这更加有力地证明了日冕波的真波属性。
其他摘要Global EUV waves are spectacular traveling disturbances in the solar corona associated with energetic eruptions such as (CMEs) and flares. Since the EIT telescope observed coronal waves in 1998, the origin of single, diffuse coronal waves has been the subject of considerable controversy. Some scholars believe that coronal waves are driven by CMEs, while others believe they are excited by flares. Recently, the high spatio-temporal imaging observation taken from AIA/SDO indicates that some coronal waves compose of multiple wavefronts, which brings new challenges for explaining the origin of the coronal waves. Therefore, it is essential to investigate the coronal wave further and provide observational evidence for the coronal waves’ physical nature and generation mechanism. The oscillations of the filaments, the cavities, and the coronal loops driven by the interactions of the coronal waves could be used to diagnose these coronal structures’ magnetic field strength using corona seismology, especially in the absence of direct approaches. The study of coronal waves is significant in diagnosing their physical essence, excitation mechanism, and energy transport. In this paper, the generation mechanism, physical essence, propagation characteristics, and interaction with coronal structures (such as CH) of QFP wave train with multiple wavefronts are studied by using AIA/SDO high spatio-temperal resolution imaging data and EUVI/STEREO multiangle observation.Generally, the large-scale EUV waves, narrow QFP wave trains, and broad QFP wave trains are observed separately. In Chapter 3, we report an eruption event that occurred at the west limb of the solar disk on 2013 April 23, simultaneously observing these three types of waves, which provide important observational data for comparing the physical parameter among them. Since the eruption origin was located at the west limb of the solar disk, the decoupling process between the large-scale EUV wave and the CME bubble can be clearly identified in the running-difference images. The composition propagating on the solar surface of the large-scale EUV wave interacted with a remote coronal loops system and reflected from the collision site. Another loop system captured a partial wavefront and constrained it to propagate along the loops system. It is worth noting that the mode conversion should occur during this process because the wave first propagated perpendicular to the direction of magnetic field lines and then along the magnetic field lines after the loops system constrained it. As mentioned above, the large-scale EUV waves are generally propagating ahead of the CME bubble. However, a broad QFP wave train was observed propagating inside the CME bubble, which emanated after the CME bubble was complete formation. Combined with the temporal and spatial relationship between the CME and broad QFP wave train, it is hard to explain the origin of this broad wave train using the CME lateral expansion. Except for the above two types of coronal waves, a narrow QFP wave train propagating along the closed coronal loops was also be observed. We investigated and compared the physical parameters of these three types of coronal waves, such as generation mechanism, speed and periodicity, and energy flux. Based on the obtained physical parameters, we further estimated the magnetic field strength of the corona and coronal loops.The corona has regions with large density and temperature sudden variations (e.g., CHs, ARs). Due to the fast fast-mode magnetosonic wave speed in these regions, the propagation of the wave always be affected and, therefore, exhibits some real wave characteristics such as refraction and partial reflection, which are reproduced in the numerical simulations. However, a fundamental phenomenon in wave theory, total reflection, has not yet been identified or detected. In Chapter 4, a wave train emanated from the east limb of the solar disk is analyzed in detail by using the high spatio-temporal imaging data taken from AIA/SDO. The southeastward propagating wave train reflected when it encountered a south pole CH. The detailed investigated results indicate that the wave train was totally reflected from the CH boundary because the measured incident angle and critical angle satisfy the theory of total reflection, i.e., the incident angle is smaller than the critical angle. The observed total reflection phenomenon further enriches the characteristics of the wave after it interacts with the CH. So far, all possible partial reflection, refraction, and total reflection phenomena have been observed. This study provides observational evidence for the true wave theory of coronal waves.The single, diffuse bright disturbance is always thought to be a fast-mode piston shock and bow shock driven by a CME’s expansion. Although this scenario can explain many observational features of the large-scale coronal waves, it is hard to distinguish whether a particular EUV wave is driven by a CME or ignited by a flare because the CME acceleration phase generally synchronizes with the flare’s impulsive phase. The high spatio-temporal observations from AIA/SDO indicate that some EUV waves compose multiple large-scale wavefronts. These so-called broad QFP wave trains are hard to be explained by using the CME lateral expansion theory. In Chapter 5, we study a broad QFP wave train, which occurred at the east limb of the solar disk on 2011 February 24, and find that its physical parameters, such as speed, amplitude, and energy flux, are consistent with the classical large-scale EUV wave. At the same time, the analysis result shows that the CME acceleration phase’s beginning time was behind the first wavefront’s appearance. In contrast, the beginning time of the wave train was slightly behind the onset of the flare QPPs. Combined with the above observational fact and the flare and the wave train share a common period, we believe the wave train should be triggered by the accompanying flare rather than the CME. This work provides strong evidence that the flare can drive the EUV wave.In the wave propagation process, the wave will be focused or defocused if it encounters a sudden change in the parameters of the median, such as density, temperature and magnetic field. This process is the familiar process effect of lens on waves. The lensing effect is widely used in optical systems, such as cameras, optical microscopes, and telescopes. Chapter 6 reported that a broad EUV wave train exhibited a significant focus process after transmitting through a lunate CH. Compared to the quiet-sun region, the CHs have stronger magnetic fields, lower temperatures, and smaller densities. Therefore, the CH could act as a lens system on the EUV wave propagation path. If the CH has a special shape, the wave will converge after transmitting through it. The observed lensing effect phenomenon is well reproduced in the numerical simulations. The lensing effect phenomenon of coronal waves is a strong proof of the true wave properties of coronal waves.
学科领域天文学 ; 太阳与太阳系
学科门类理学 ; 理学::天文学
页数0
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25785
专题选址与日冕观测组
推荐引用方式
GB/T 7714
周新平. 大尺度日冕波动现象的多波段观测研究[D]. 北京. 中国科学院大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
大尺度日冕波动现象的多波段观测研究.pd(57762KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[周新平]的文章
百度学术
百度学术中相似的文章
[周新平]的文章
必应学术
必应学术中相似的文章
[周新平]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 大尺度日冕波动现象的多波段观测研究.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。