YNAO OpenIR  > 抚仙湖太阳观测和研究基地
Solar Speckle Image Deblurring With Deep Prior Constraint Based on Regularization
Jin, Yahui1; Jiang, Murong1; Yang L(杨磊)2; Zou SZ(邹思仲)2; Deng, Linhao1; Chen JY(谌俊毅)2
发表期刊IEEE ACCESS
2022
卷号10页码:128195-128206
DOI10.1109/ACCESS.2022.3226812
产权排序第2完成单位
收录类别SCI ; EI
关键词Solar speckle image regularization model deep image prior point spread function
摘要

The solar speckle image has the characteristics with single features, more noise, and blurred local details. Most of the existing deep learning deblurring methods for solar speckle images have some problems, such as high-frequency loss, artifact generation, and dependence on the paired image. In this paper, a deep prior deblurring method fusing the regularization model and prior constraint network is proposed. Firstly, the traditional handcrafted regularization priors are added to the network parameterized blind deconvolution model. The image gradient prior and blur kernel initial parameters are respectively used to the network parameterization process of two variables in the blind deconvolution model, which are the latent clean image variables and blur kernel variables. After that, the solar speckle image deep prior deblurring model is established. Secondly, the blur kernel generation network input is estimated by using the atmospheric point spread function (PSF) to improve the model convergence speed. Thirdly, a latent clean image generation network including joint gradient branching and Feature Pyramid Network (FPN) structure is designed to enhance image local edge details. Finally, a joint loss function including pixel loss, image prior loss, and mean squared error (MSE) loss is introduced to guide the model for alternate training. It can obtain the best parameter values of latent clean image and blur kernel, and achieve the solar speckle image high-resolution reconstruction. The experimental results show that the proposed method can eliminate the dependence on the reference image, and the reconstructed image has less noise and more obvious high-frequency details, faster network convergence, and two evaluation indicators of Peak Signal Noise Ratio (PSNR) and Structural Similarity (SSIM) are significantly improved.

资助项目N/A
项目资助者N/A
语种英语
学科领域天文学 ; 太阳与太阳系 ; 太阳与太阳系其他学科 ; 计算机科学技术 ; 计算机应用 ; 计算机图象处理
文章类型Article
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
出版地445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
ISSN2169-3536
URL查看原文
WOS记录号WOS:000899129300001
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
EI入藏号20225213307471
EI主题词Solar energy
EI分类号461.4 Ergonomics and Human Factors Engineering - 657.1 Solar Energy and Phenomena - 716.1 Information Theory and Signal Processing - 741.1 Light/Optics - 921 Mathematics - 922.2 Mathematical Statistics
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/25698
专题抚仙湖太阳观测和研究基地
信息中心
通讯作者Jiang, Murong
作者单位1.School of Information Science and Engineering, Yunnan University, Kunming, China;
2.Yunnan Observatories, Chinese Academy of Sciences, Kunming, China;
推荐引用方式
GB/T 7714
Jin, Yahui,Jiang, Murong,Yang L,et al. Solar Speckle Image Deblurring With Deep Prior Constraint Based on Regularization[J]. IEEE ACCESS,2022,10:128195-128206.
APA Jin, Yahui,Jiang, Murong,Yang L,Zou SZ,Deng, Linhao,&Chen JY.(2022).Solar Speckle Image Deblurring With Deep Prior Constraint Based on Regularization.IEEE ACCESS,10,128195-128206.
MLA Jin, Yahui,et al."Solar Speckle Image Deblurring With Deep Prior Constraint Based on Regularization".IEEE ACCESS 10(2022):128195-128206.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Solar Speckle Image (1740KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jin, Yahui]的文章
[Jiang, Murong]的文章
[Yang L(杨磊)]的文章
百度学术
百度学术中相似的文章
[Jin, Yahui]的文章
[Jiang, Murong]的文章
[Yang L(杨磊)]的文章
必应学术
必应学术中相似的文章
[Jin, Yahui]的文章
[Jiang, Murong]的文章
[Yang L(杨磊)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Solar Speckle Image Deblurring With Deep Prior Constraint Based on Regularization.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。