YNAO OpenIR  > 大样本恒星演化研究组
Machine Learning to Search for Accreting Neutron Star Binary Candidates Using Chinese Space Station Telescope Photometric System
Lan SY(兰顺义)1,2,3; Ji KF(季凯帆)1; Meng XC(孟祥存)1,2
发表期刊RESEARCH IN ASTRONOMY AND ASTROPHYSICS
2022-12-01
卷号22期号:12
DOI10.1088/1674-4527/ac9e92
产权排序第1完成单位
收录类别SCI
关键词stars: neutron X-rays: binaries methods: analytical
摘要

Accreting neutron star binary (ANSB) systems can provide some important information about neutron stars (NSs), especially on the structure and the equation of state of NSs. However, only a few ANSBs are known so far. The upcoming Chinese Space Station Telescope (CSST) provides an opportunity to search for a large number of ANSB candidates. We aim to investigate whether or not a machine learning method may efficiently search for ANSBs based on CSST photometric system. In this paper, we generate some ANSBs and normal binaries under CSST photometric system by binary evolution and binary population synthesis method and use a machine learning method to train a classification model. We consider the classical multi-color disk and the irradiated accretion disk, then compare their effects on the classification results. We find that no matter whether the X-ray reprocessing effect is included or not, the machine learning classification accuracy is always very high, i.e., higher than 96%. If a significant magnitude difference exists between the accretion disk and the companion of an ANSB, machine learning may not distinguish it from some normal stars such as massive main sequence stars, white dwarf binaries, etc. False classifications of the ANSBs and the normal stars highly overlap in a color-color diagram. Our results indicate that machine learning would be a powerful way to search for potential ANSB candidates from the CSST survey.

资助项目National Key Ramp ; D Program of China[2021YFA1600403] ; National Natural Science Foundation of China[11973080] ; National Natural Science Foundation of China[11733008] ; China Manned Space Project[CMS-CSST-2021-B07] ; Yunnan Ten Thousand Talents Plan-Young & Elite Talents Project ; CAS Light of West China Program
项目资助者National Key Ramp ; D Program of China[2021YFA1600403] ; National Natural Science Foundation of China[11973080, 11733008] ; China Manned Space Project[CMS-CSST-2021-B07] ; Yunnan Ten Thousand Talents Plan-Young & Elite Talents Project ; CAS Light of West China Program
语种英语
学科领域天文学 ; 恒星与银河系 ; 恒星形成与演化
文章类型Article
出版者NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES
出版地20A DATUN RD, CHAOYANG, BEIJING, 100012, PEOPLES R CHINA
ISSN1674-4527
URL查看原文
WOS记录号WOS:000897926300001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]X-RAY BINARIES ; DISC INSTABILITY MODEL ; LOW-MASS ; MILLISECOND PULSAR ; INDUCED COLLAPSE ; IA SUPERNOVAE ; EVOLUTION ; PROGENITORS ; CATALOG
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/25692
专题大样本恒星演化研究组
中国科学院天体结构与演化重点实验室
天文技术实验室
通讯作者Lan SY(兰顺义); Meng XC(孟祥存)
作者单位1.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China; [email protected], [email protected];
2.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China;
3.University of Chinese Academy of Sciences, Beijing 100049, China
第一作者单位中国科学院云南天文台
通讯作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
Lan SY,Ji KF,Meng XC. Machine Learning to Search for Accreting Neutron Star Binary Candidates Using Chinese Space Station Telescope Photometric System[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2022,22(12).
APA Lan SY,Ji KF,&Meng XC.(2022).Machine Learning to Search for Accreting Neutron Star Binary Candidates Using Chinese Space Station Telescope Photometric System.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,22(12).
MLA Lan SY,et al."Machine Learning to Search for Accreting Neutron Star Binary Candidates Using Chinese Space Station Telescope Photometric System".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 22.12(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Machine Learning to (2918KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lan SY(兰顺义)]的文章
[Ji KF(季凯帆)]的文章
[Meng XC(孟祥存)]的文章
百度学术
百度学术中相似的文章
[Lan SY(兰顺义)]的文章
[Ji KF(季凯帆)]的文章
[Meng XC(孟祥存)]的文章
必应学术
必应学术中相似的文章
[Lan SY(兰顺义)]的文章
[Ji KF(季凯帆)]的文章
[Meng XC(孟祥存)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Machine Learning to Search for Accreting Neutron Star Binary Candidates Using Chinese Space Station Telescope Photometric System.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。