YNAO OpenIR  > 南方基地
Galaxy morphoto-Z with neural Networks (GaZNets) I. Optimized accuracy and outlier fraction from imaging and photometry
Li, Rui1,2; Napolitano, Nicola R.3,4; Feng HC(封海成)1,5; Li, Ran1,2; Amaro, Valeria3; Xie, Linghua3; Tortora, Crescenzo6; Bilicki, Maciej7; Brescia, Massimo6; Cavuoti, Stefano6,8; Radovich, Mario9
发表期刊ASTRONOMY & ASTROPHYSICS
2022-10-11
卷号666
DOI10.1051/0004-6361/202244081
产权排序第5完成单位
收录类别SCI ; EI
关键词surveys galaxies: general techniques: photometric galaxies: photometry
摘要

Aims. In the era of large sky surveys, photometric redshifts (photo-z) represent crucial information for galaxy evolution and cosmology studies. In this work, we propose a new machine learning (ML) tool called Galaxy morphoto-Z with neural Networks (GaZNet-1), which uses both images and multi-band photometry measurements to predict galaxy redshifts, with accuracy, precision and outlier fraction superior to standard methods based on photometry only. Methods. As a first application of this tool, we estimate photo-z for a sample of galaxies in the Kilo-Degree Survey (KiDS). GaZNet-1 is trained and tested on similar to 140 000 galaxies collected from KiDS Data Release 4 (DR4), for which spectroscopic redshifts are available from different surveys. This sample is dominated by bright (MAG_AUTO < 21) and low-redshift (z < 0.8) systems; however, we could use similar to 6500 galaxies in the range 0.8 < z < 3 to effectively extend the training to higher redshift. The inputs are the r-band galaxy images plus the nine-band magnitudes and colors from the combined catalogs of optical photometry from KiDS and near-infrared photometry from the VISTA Kilo-degree Infrared survey. Results. By combining the images and catalogs, GaZNet-1 can achieve extremely high precision in normalized median absolute deviation (NMAD = 0.014 for lower redshift and NMAD = 0.041 for higher redshift galaxies) and a low fraction of outliers (0.4% for lower and 1.27% for higher redshift galaxies). Compared to ML codes using only photometry as input, GaZNet-1 also shows a similar to 10%-35% improvement in precision at different redshifts and a similar to 45% reduction in the fraction of outliers. We finally discuss the finding that, by correctly separating galaxies from stars and active galactic nuclei, the overall photo-z outlier fraction of galaxies can be cut down to 0.3%.

资助项目National Nature Science Foundation of China[11988101] ; National Nature Science Foundation of China[11773032] ; National Nature Science Foundation of China[12022306] ; China Manned Space Project[CMS-CSST-2021-B01] ; China Manned Space Project[CMS-CSST-2021-A01] ; K.C. Wong Education Foundation ; One hundred top talent program of Sun Yat-sen University[71000-18841229] ; Polish National Science Center[2020/38/E/ST9/00395] ; Polish National Science Center[2018/30/E/ST9/00698] ; Polish National Science Center[2018/31/G/ST9/03388] ; Polish National Science Center[2020/39/B/ST9/03494] ; Polish Ministry of Science and Higher Education[DIR/WK/2018/12] ; ESO Telescopes at the La Silla Paranal Observatory[177.A-3016] ; ESO Telescopes at the La Silla Paranal Observatory[177.A-3017] ; ESO Telescopes at the La Silla Paranal Observatory[177.A-3018] ; ESO Telescopes at the La Silla Paranal Observatory[179.A-2004]
项目资助者National Nature Science Foundation of China[11988101, 11773032, 12022306] ; China Manned Space Project[CMS-CSST-2021-B01, CMS-CSST-2021-A01] ; K.C. Wong Education Foundation ; One hundred top talent program of Sun Yat-sen University[71000-18841229] ; Polish National Science Center[2020/38/E/ST9/00395, 2018/30/E/ST9/00698, 2018/31/G/ST9/03388, 2020/39/B/ST9/03494] ; Polish Ministry of Science and Higher Education[DIR/WK/2018/12] ; ESO Telescopes at the La Silla Paranal Observatory[177.A-3016, 177.A-3017, 177.A-3018, 179.A-2004]
语种英语
学科领域天文学 ; 星系与宇宙学
文章类型Article
出版者EDP SCIENCES S A
出版地17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE
ISSN0004-6361
URL查看原文
WOS记录号WOS:000865835600012
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]KILO-DEGREE SURVEY ; DATA RELEASE ; REDSHIFTS ; MACHINE ; SELECTION ; CATALOG ; DESIGN ; SPACE ; EVOLUTION ; CLUSTERS
EI入藏号20224513054436
EI主题词Surveys
EI分类号657.2 Extraterrestrial Physics and Stellar Phenomena - 741.1 Light/Optics - 922.2 Mathematical Statistics - 941.4 Optical Variables Measurements
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/25600
专题南方基地
通讯作者Li, Rui
作者单位1.School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, PR China;
2.National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, PR China;
3.School of Physics and Astronomy, Sun Yat-sen University, Zhuhai Campus, 2 Daxue Road, Xiangzhou District, Zhuhai, PR China;
4.CSST Science Center for Guangdong-Hong Kong-Macau Great Bay Area, Zhuhai, 519082, PR China;
5.Yunnan Observatories, Chinese Academy of Sciences, Kunming, 650011 Yunnan, PR China;
6.INAF – Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy;
7.Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland;
8.INFN – Sezione di Napoli, via Cinthia 9, 80126 Napoli, Italy;
9.INAF – Osservatorio Astronomico di Padova, via dell’Osservatorio 5, 35122 Padova, Italy
推荐引用方式
GB/T 7714
Li, Rui,Napolitano, Nicola R.,Feng HC,et al. Galaxy morphoto-Z with neural Networks (GaZNets) I. Optimized accuracy and outlier fraction from imaging and photometry[J]. ASTRONOMY & ASTROPHYSICS,2022,666.
APA Li, Rui.,Napolitano, Nicola R..,Feng HC.,Li, Ran.,Amaro, Valeria.,...&Radovich, Mario.(2022).Galaxy morphoto-Z with neural Networks (GaZNets) I. Optimized accuracy and outlier fraction from imaging and photometry.ASTRONOMY & ASTROPHYSICS,666.
MLA Li, Rui,et al."Galaxy morphoto-Z with neural Networks (GaZNets) I. Optimized accuracy and outlier fraction from imaging and photometry".ASTRONOMY & ASTROPHYSICS 666(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Galaxy morphoto-Z wi(2260KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Rui]的文章
[Napolitano, Nicola R.]的文章
[Feng HC(封海成)]的文章
百度学术
百度学术中相似的文章
[Li, Rui]的文章
[Napolitano, Nicola R.]的文章
[Feng HC(封海成)]的文章
必应学术
必应学术中相似的文章
[Li, Rui]的文章
[Napolitano, Nicola R.]的文章
[Feng HC(封海成)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Galaxy morphoto-Z with neural Networks (GaZNets) I. Optimized accuracy and outlier fraction from imaging and photometry.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。