基于结构重参数化的太阳斑点图像弱监督去模糊方法 | |
其他题名 | Solar speckle image deblurring method with weakly supervised based on structural re-parameterization |
邓林浩1; 蒋慕蓉1; 杨磊2; 谌俊毅2; 金亚辉1 | |
发表期刊 | 计算机应用研究/Application Research of Computers |
2023-04 | |
卷号 | 40期号:04页码:1250-1255 |
DOI | 10.19734/j.issn.1001-3695.2022.07.0388 |
分类号 | TP391.4 |
产权排序 | 第2完成单位 |
收录类别 | CSCD ; 核心 |
关键词 | 弱监督 太阳斑点 去模糊 重参数化 轻量网络 |
摘要 | 针对云南天文台拍摄的模糊太阳斑点图像使用有监督学习模型进行重建时容易产生伪像、训练时间长、重建结果过分依赖参考图像等问题,提出一种基于结构重参数化与多分支模块相结合的弱监督去模糊方法重建太阳斑点图。首先,结合单尺度与多尺度网络设计去模糊模型,在模型中构造多分支模块提取不同尺度的特征,增强细节信息,减少伪像生成;其次,对每个分支结构进行重参数化,使得结构参数的重用贯穿整个特征提取过程,节省计算时间;之后,将去模糊模型分别嵌入退化学习与逆退化学习的弱监督训练中,先对模糊图像进行等级划分,利用退化模型分别学习不同等级的退化,构成对应等级的配对数据集,再使用去模糊模型对数据集进行逆退化,实现太阳斑点图的重建。实验结果表明,该方法与现有深度学习去模糊方法相比,模型训练效率更高,对参考图像的依赖较小,能够满足太阳斑点图像高分辨率重建要求。 |
其他摘要 | With the supervised deep learning algorithms, it is prone to generate artifacts when restoring the blurred solar speckle images taken by Yunnan Observatories, and it has a long training time and over-reliance on reference images, this paper proposed a weakly supervised method based on structural reparameterization combined with multi-branch module to reconstruct solar speckle images. First, deblurring model combined single-scale and multi-scale network to design, with constructing multi-branch modules to extract features of different scales, enhance detailed information, and reduce the generation of artifacts; second, each branch structure re-parameterized to make the reuse of structure parameters runs through the entire feature extraction process; after that, the deblurring model embedded in the weakly supervised training, the blurred image assorted firstly, then the degradation model used to learn different levels of degradation. Constituted paired dataset of corresponding levels, and the deblurring model used to inversely degenerate the dataset to reconstruct solar speckle images. Experimental results show that compared with the existing deblurring method, the proposed method has higher model training efficiency and less dependence on reference images, which can meet the high-resolution reconstruction requirements of solar speckle images. |
资助项目 | 国家自然科学基金资助项目[11773073] ; 云南省高校科技创新团队支持项目[IRTSTYN] ; 云南大学研究生科研创新基金项目[2021Y273] |
项目资助者 | 国家自然科学基金资助项目[11773073] ; 云南省高校科技创新团队支持项目[IRTSTYN] ; 云南大学研究生科研创新基金项目[2021Y273] |
语种 | 中文 |
学科领域 | 天文学 ; 太阳与太阳系 ; 太阳与太阳系其他学科 ; 天文学其他学科 ; 计算机科学技术 ; 计算机应用 ; 计算机图象处理 |
ISSN | 1001-3695 |
URL | 查看原文 |
CSCD记录号 | CSCD:7450029 |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/25598 |
专题 | 抚仙湖太阳观测和研究基地 信息中心 |
通讯作者 | 蒋慕蓉 |
作者单位 | 1.云南大学信息学院; 2.中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | 邓林浩,蒋慕蓉,杨磊,等. 基于结构重参数化的太阳斑点图像弱监督去模糊方法[J]. 计算机应用研究/Application Research of Computers,2023,40(04):1250-1255. |
APA | 邓林浩,蒋慕蓉,杨磊,谌俊毅,&金亚辉.(2023).基于结构重参数化的太阳斑点图像弱监督去模糊方法.计算机应用研究/Application Research of Computers,40(04),1250-1255. |
MLA | 邓林浩,et al."基于结构重参数化的太阳斑点图像弱监督去模糊方法".计算机应用研究/Application Research of Computers 40.04(2023):1250-1255. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
基于结构重参数化的太阳斑点图像弱监督去模(1090KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[邓林浩]的文章 |
[蒋慕蓉]的文章 |
[杨磊]的文章 |
百度学术 |
百度学术中相似的文章 |
[邓林浩]的文章 |
[蒋慕蓉]的文章 |
[杨磊]的文章 |
必应学术 |
必应学术中相似的文章 |
[邓林浩]的文章 |
[蒋慕蓉]的文章 |
[杨磊]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论