YNAO OpenIR  > 光纤阵列太阳光学望远镜研究组
太阳偏振测量关键技术与方法研究
其他题名Research on Key Technologies and Methods of Solar Polarimetry
梁昱
学位类型博士
导师屈中权
2021-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天文技术与方法
关键词偏振测量误差 积分视场光谱 偏振光学开关解调方法 图像配准
摘要几乎所有天体辐射都是包含偏振信息的。偏振信息对于我们理解天体的磁场、动力学、热力学参量、天体偏振辐射转移机制以及辐射过程中介质的物理结构特征至关重要。作为太阳磁场测量的核心内容,新一代的太阳望远镜,例如,美国4m 量级太阳望远镜(The Daniel K. Inouye Solar Telescope,DIKST),欧洲的空间太阳磁场测量项目Solar magnetism eXplorer(SolmeX),我国预研中的中国巨型太阳望远镜(Ground-based Giant Solar Telescope of China ,CGST),和日冕磁场及等离子体综合探测望远镜(Coronal Magnetism and Plasma Assembled Scopes,COMPASS)等仪器对于偏振测量精度的要求均已经到了10-4Ic(Ic 代表连续谱强度)量级。对于如此高的偏振测量精度要求,偏振测量系统光学元件的装调、偏振调制方案及解调方法、数据处理等因素将直接影响到偏振测量精度。如何实现稳定、高效、可靠的10-4Ic量级的高精度偏振测量,是当下实测天文学科遇到的一大技术难题。本论文的目的在于,针对10-4Ic量级偏振测量精度的目标,分别从光学元件的装调精度、双光束积分视场光谱测量系统的偏振解调方法、日冕偏振图像的精确配准方法和积分视场偏振光谱数据处理关键技术四个方面分析论证太阳偏振测量中的关键技术和方法。论文的主要内容和创新点在于:1. 光学元件的装调精度对于偏振测量的影响。以旋转波片模式的偏振测量系统为例,从几何角度,把影响偏振测量精度的误差量分为轴向、高度角、方位角三类误差。建模仿真分析了可以引入轴向、高度角、方位角等装调误差的误差源,并且结合实际的仪器工作情况讨论了各类误差对偏振测量的敏感程度及误差传递。在此基础上,给出了上述三类误差的校正方法。并对下一代仪器10-4Ic量级的偏振测量仪器进行了容差分析和精度设计。2. 双光束积分视场光谱测量系统的偏振解调方法。从数学原理上系统性的分析论证了传统的双光束偏振解调方法、基于双光束偏振态切换的偏振光学开关解调方法和约化偏振光学开关解调方法的解调原理及其误差源。结论如下:传统的双光束解调方法:其偏振测量误差的主要来源是两支光束的增益偏差;基于光束切换的偏振光学开关解调方法:其解调误差的主要来源在于忽略了Stokes信号的二阶误差;约化偏振光学开关解调方法:其解调误差的主要来源是忽略了太阳Stokes 信号与参考样本数据误差乘积的高阶误差。在理论分析的基础上,我们依托中国科学院云南天文台的FASOT-1B 望远镜实际观测了编号为NOAA12738 的太阳活动区。解调结果显示:无论是偏振灵敏度还是偏振测量精度,约化偏振光学开光解调方法优于偏振光学开关解调方法,偏振光学开光解调方法优于传统双光束解调方法。3. 日冕偏振图像的精确配准方法。针对偏振成像数据:提出了一种日冕低信噪比图像的高精度配准方法。利用2017 年美国日全食观测到的红线偏振数据进行了图像配准及偏振成像分析。结果表明,传统的交叉相关算法无法实现高精度的图像配准,对于日冕红线图像的配准结果无法令人满意。我们提出的基于盲退卷积+ 噪声自适应均衡滤波进行图像增强,然后对于增强的日冕图像进行交叉相关配准的方法可以实现较好的配准结果。4. 积分视场偏振光谱数据处理关键技术。提出基于主成分分析法的低信噪比光谱降噪、积分视场偏振光谱的光谱抽取、积分视场光谱的平场以及色散方向的仪器轮廓改正四个思路来提高积分视场偏振光谱数据处理的精度。并且结合2017 年美国日全食、2019 年智利日全食期间观测到的积分视场偏振光谱数据以及中国科学院云南天文台的FASOT-1B 望远镜的观测数据进行了实测实验。结果表明:主成分分析法对于低信噪比光谱降噪效果明显。对于积分视场光谱的抽取和平场以及色散方向的仪器轮廓改正问题,我们提出了进一步深入研究的思路。
其他摘要Almost all celestial bodies’ radiation is polarized. The polarization information of electromagnetic radiation is very important for us to understand the celestial body’s magnetic field, dynamics parameters, thermodynamic parameters, polarization radiation transfer mechanism, and the physical information of the medium in the radiation process. The new generation of solar telescopes, for example, the 4m solar telescope Daniel K. Inouye Solar Telescope (DIKST) in the USA, the European space solar magnetic field measurement project Solar magnetism eXplorer (SolmeX), China Giant Solar Telescope (CGST), and the Coronal Magnetism and Plasma Assembled Scopes (COMPASS) and their polarimetric accuracy needs to be 10−4Ic. For such high polarimetric accuracy requirements, the influence of optical components' installation and adjustment accuracy, the polarization modulation scheme, the demodulation method, and errors introduced by data processing will directly affect the polarimetric accuracy. How to achieve stable, efficient, and reliable high-precision polarimetry of 10−4Ic is a major technical problem encountered by the current astronomical technology discipline. The purpose of this thesis is to systematically analyze and demonstrate the key technologies and methods of the solar polarimetry from the influence of the installation and adjustment accuracy of optical components, the polarization modulation scheme and demodulation method, and the error introduced by the data processing for the target of the deviation measurement accuracy of the order of 10−4Ic. The main content and innovations of the thesis are:1. The influence of the installation and adjustment accuracy of optical components. Taking the polarization analyzer of the rotating waveplate as an example, the errors that affect the accuracy of polarimetry are divided into three types from the geometric dimensions: axial, altitude, and azimuth. Modeling simulation analyzes the error sources that can introduce axial error, altitude error, and azimuth error. Then the sensitivity of various errors and the transmission of geometric errors to deviation measurement errors are discussed in combination with actual working conditions. On this basis, the correction methods of the above three types of errors are given. Besides, tolerance analysis and precision design are carried out for the instrument design of the next-generation instrument with a polarimetric accuracy of the order of 10−4Ic.2. The demodulation method of dual-beam integral field spectrum polarimetry system. We systematically analyzed and demonstrated the traditional dual-beam polarization demodulation method, the polarization optical switch demodulation method based on beam switching, and the reduced polarization optical switch demodulation method from the mathematical principle. The following conclusions are given: in the traditional two-beam demodulation method, the main source of polarimetric error is the gain deviation of the two beams; in the polarization optical switch demodulation method based on beam switching: the main source of the demodulation error is originated from ignoring Stokes parameters of the second-order error of the signal; in the reduced polarization optical switch demodulation method: the main source of the demodulation error is by omitting the high-order error, i.e. ignores the product of the solar Stokes Q/I and the reference sample data. Based on theoretical analysis, the FASOT-1B telescope of the Yunnan Observatory of the Chinese Academy of Sciences was used to observe the solar active area NOAA 12738. The demodulation results show that in either it is polarization sensitivity or polarimetric accuracy, the reduced polarization optical switch demodulation method is better than the polarization optical switch demodulation method, and the polarization optical switch demodulation method is better than the traditional dual-beam demodulation method.3. The accurate registration method of corona polarized image. A high-precision registration method for corona low-signal-to-noise ratio images is proposed. The red line polarization data observed in the total solar eclipse in the United States in 2017 was used for image registration and imaging polarimetry. The results show that the traditional Cross-Correlation (CC) algorithm cannot achieve high-precision image registration, and the registration result of the coronal red line image is not satisfactory. We proposed the method of image enhancement based on Blind Deconvolution (BD) plus Noise Adaptive Fuzzy Equalization method (NAFE), and then cross-correlation registration of the enhanced corona image can achieve better registration results. 4. Key technologies of integral field spectrum polarimetry system. Principal component analysis for low signal-to-noise ratio spectral noise reduction, spectrum extraction of the integrated field spectrum (IFS), flat field of IFS, and instrument profile correction in the direction of dispersion of the IFS are discussed. The IFS data observed during the 2017 total solar eclipse in the United States, the total solar eclipse in Chile in 2019, and the FASOT-1B telescope of the Yunnan Astronomical Observatory of the Chinese Academy of Sciences are used for the experiments. The results show that the principal component analysis method has an obvious denoising effect on low signal-to-noise ratio IFS. Specific research ideas are put forward for the extraction of the IFS, the flat field of IFS, and the correction of the instrument profile in the direction of dispersion. These three problems form relatively complex system problems and need to be further studied in the follow-up work.
学科领域天文学 ; 太阳与太阳系 ; 太阳与太阳系其他学科
学科门类理学 ; 理学::天文学
页数148
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25502
专题光纤阵列太阳光学望远镜研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
梁昱. 太阳偏振测量关键技术与方法研究[D]. 北京. 中国科学院大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
太阳偏振测量关键技术与方法研究.pdf(17518KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[梁昱]的文章
百度学术
百度学术中相似的文章
[梁昱]的文章
必应学术
必应学术中相似的文章
[梁昱]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 太阳偏振测量关键技术与方法研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。