YNAO OpenIR  > 应用天文研究组
机器学习在空间目标探测中的应用
其他题名Application of machine learning in space target detection
冯凯斌
学位类型硕士
导师李荣旺
2021-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天体测量与天体力学
关键词机器学习 数据预处理 信号识别 图像分类 卫星激光测距
摘要截至2020年,据估计在绕地轨道上尺寸大于1cm的空间目标已经超过200000个,并且可能有数百万个小于1cm的碎片。随着各个国家和组织的航天活动越来越频繁,空间目标的数量会越来越多,其中太空中的碎片数量正威胁着载人和未载人的航天飞行活动。因此,对空间目标的跟踪和探测尤为重要,本文的主要研究内容是机器学习在空间目标探测的应用研究,包括在卫星激光测距(含卫星碎片测距)和在光学目标观测的应用研究。卫星激光测距技术是目前距离精度最高的空间大地测量技术之一,其最高测量精度可达毫米级。利用卫星激光测距技术得到的数据进一步可以进行很多种的科学研究,包括精密定轨、建立精确的地球参考系、测定地球自传参数和验证广义相对论等。这些数据在进行科学应用之前需要对数据进行预处理包括主回波匹配和去除噪声信号识别,本文第二章主要介绍提出的两种卫星激光测距信号识别新方法,一种是基于图像边缘检测,一种是基于深度神经网络的识别方法。利用新提出的方法分别对卫星和空间碎片的实测数据进行了信号处理和识别,并且与目前常规方法的处理结果进行对比,基本验证了新方法的准确性,可以作为卫星激光测距信号识别方法的参考和补充。空间目标光学观测是天文学最基本的观测手段之一,本文的第三章主要介绍深度学习在光学目标观测数据预处理中的应用,主要是对被污染观测图像进行剔除,其中对被云层污染的观测数据处理分类准确率达到99%,对观测目标被恒星污染的观测图像分类准确率达到80%,这部分后续还有很大的提升空间。
其他摘要By 2020, it is estimated that there are more than 200,000 space targets larger than 1 cm in orbit around the Earth, and there may be millions of fragments smaller than 1 cm. As the space activities of various countries and organizations become more frequent, the number of space targets will increase, and the amount of debris in space is threatening manned and unmanned spaceflight activities. Therefore, the tracking and detection of space targets is particularly important. The main research content of this paper is the application research of machine learning in space target detection, including the application research of satellite laser ranging (including satellite debris ranging) and optical target observation.Satellite laser ranging technology is currently one of the space geodetic technologies with the highest distance accuracy, and its highest measurement accuracy can reach millimeter level. The data obtained by using satellite laser ranging technology can further carry out many kinds of scientific research, including precise orbit determination, establishment of an accurate earth reference system, determination of the autobiographical parameters of the earth, and verification of general relativity. These data need to be preprocessed before scientific application, including main echo matching and noise removal signal recognition. Chapter 2 of this article mainly introduces two new methods of satellite laser ranging signal recognition, one is based on image edge detection , One is the recognition method based on deep neural network. The newly proposed method was used to process and identify the measured data of satellites and space debris, and compared with the processing results of the current conventional methods, the accuracy of the new method was basically verified, and it can be used as a satellite laser ranging signal identification method. References and supplements.Optical observation of space targets is one of the most basic observation methods in astronomy. The third chapter of this article mainly introduces the application of deep learning in the preprocessing of optical target observation data, mainly removing contaminated observation images, including observations contaminated by clouds. The data processing classification accuracy rate reaches 99%, and the classification accuracy rate of observation images polluted by stars reaches 80%. There is still much room for improvement in this part in the future.
学科领域天文学 ; 天体测量学 ; 计算机科学技术 ; 人工智能 ; 计算机应用
学科门类理学 ; 理学::天文学 ; 工学 ; 工学::计算机科学与技术(可授工学、理学学位)
页数59
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25491
专题应用天文研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
冯凯斌. 机器学习在空间目标探测中的应用[D]. 北京. 中国科学院大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
机器学习在空间目标探测中的应用.pdf(5569KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[冯凯斌]的文章
百度学术
百度学术中相似的文章
[冯凯斌]的文章
必应学术
必应学术中相似的文章
[冯凯斌]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 机器学习在空间目标探测中的应用.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。