YNAO OpenIR  > 南方基地
基于深度学习的恒星光谱分类
其他题名Stellar Spectrum Classification Based on deep learning
王天翔
学位类型硕士
导师范玉峰
2021-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天文技术与方法
关键词恒星光谱 MK分类 深度学习 回归 特征映射
摘要近年来,随着各大光谱巡天项目的陆续实施,观测得到的天体光谱数据急剧增长。为了能对海量的天体光谱数据进行有效利用,我们对恒星光谱分类和深度学习方法进行了研究,参考国内外相关研究的文献,提出了对恒星光谱进行MK自动分类的深度学习方法。在光谱型分类方面,因为光谱型代表的是恒星温度,本文将光谱型分类问题转化为温度的回归问题,设计了深度残差网络对光谱类别进行预测。模型的主体由残差网络构成,主要包括卷积层,最大池化层,平均池化层,全连接层以及残差结构。最大池化层用来筛选特征,卷积层用于提取特征,平均池化层用于减少模型参数,提高效率。残差结构可以防止网络退化,加深网络来提取高维抽象特征以及提高训练速度,同时我们还在模型上加入了注意力机制。考虑到光谱有非零几率存在错误标签以及损坏的情况,本文采用Log-Cosh作为损失函数来降低坏样本带来的负面影响。实验数据使用的是从LAMOST、SDSS等光谱库中随机抽取的恒星光谱,由于光谱质量等原因,每个光谱型的光谱数量不一。经过剔除坏值,流量归一化后,按7:1:2分割数据集。实验包括两个部分,第一个部分是使用数据集训练网络在光谱次型上进行类别预测,使用最大绝对误差、平均绝对误差以及标准差来比较不同形状卷积核的性能。将预测值作为横坐标,标签作为纵坐标,对测试集所有样本点使用线性拟合和二阶非线性拟合,得到了一条与y = x基本重合的直线,证明模型可以很好的预测光谱次型。第二部分是对模型进行内部分析,使用类别激活映射的方法分别研究了模型预测A、F、G、K四种类型光谱时所关注的主要特征,赋予了模型可解释性。在文中数据集上,该方法取得了平均绝对误差为0.4个光谱次型的优秀预测结果。与非参数回归、Adaboost回归树、K-Means三种方法进行同数据集比较,结果表明文中提出的方法可以很好地预测光谱次型并且速度更快,准确率更高。在光度型方面,由于光度型分类依赖于谱线的细微变化,对于此,本文采用多尺度卷积模型提取谱线特征,主要包括卷积层、ReLU激活层、批归一化层、Softmax层和全连接层。由于光度型的有标签数据稀少,本文利用迁移学习思想,先将模型在光谱型数据集上进行预训练,然后在光度型数据集上进行微调。由于数据集类不平衡,本文在微调时使用Focal Loss作为损失函数,以此来提升训练效果,最后将结果与相关研究中的算法进行了比较分析。
其他摘要In recent years, the spectral data of celestial bodies observed have achieved a dramatic increase thanks to the successive implementation of various projects of spectral sky survey. Therefore, higher requirements for the automatic classification and analysis of spectrum are proposed for large-scale projects of spectral sky survey. In this paper, we design a deep learning method for MK classification of stellar spectra.In the classification of spectral type, the classification problem is transformed into a regression one in this paper, and a method of spectral category regression based on the depth residual network is put forward to conduct a prediction of MK spectral subtype on stellar spectrum. Convolution layers, maximum pooling layer, average pooling layer, full connection layer and residual structures are used to make up this model. The maximum pooling layer is used to filter features, the convolution layer to extract features, and the average pooling layer to reduce parameters and improve efficiency. Residual structure can prevent the degradation of network, extract high-dimensional abstract features by deepening the network and improve training speed. Considering the non-zero probability of data with false labels and corrupted data, Log-Cosh is adopted as loss function in this paper to reduce the negative impact of bad samples. The experimental data are randomly extracted from LAMOST, SDSS and other spectral libraries. The spectra are divided according to the proportion of 7:1:2 after eliminating the bad value and normalizing the flow. The experiment was divided into two parts. In the first part, the network is adopted to carry out prediction on the spectral subtype, and the maximum absolute error, the average absolute error and the standard deviation are used to compare the performance of convolution kernels with different shapes. The predicted value is taken as the abscissa and the label as the ordinate, and the second-order nonlinear fitting is used for all sample points in the test set, a straight line that is coincident with y = x is obtained, proving that the model can predict the spectral subtype well. The second part is concerning the internal analysis of the model. The main characteristics of the model in predicting four types of spectra, A, F, G, K, are mainly explored with the method of category activation mapping, thus endowing the model with interpretability. In text data set, the average absolute error of the prediction is 0.4 spectral subtypes. It is shown that the method proposed in this paper can better predict spectral subtypes with faster speed and higher accuracy according to the comparison of same data set with nonparametric regression, AdaBoost regression tree and K-means.In the classification of luminosity level, As the luminosity level classification depends on the subtle changes of spectral lines, this paper uses multi-scale convolution model to extract spectral line features, mainly including convolution layer, ReLU activation layer, batch normalization layer, softmax layer and full connection layer. Due to the scarcity of labeled data, this paper uses the idea of transfer learning to pre train the model on the spectral data set, and then fine tune it on the luminosity data set. Due to the imbalance of data sets, this paper uses focal loss as the loss function to improve the training effect.
学科领域天文学 ; 恒星与银河系 ; 计算机科学技术 ; 人工智能 ; 计算机应用
学科门类理学 ; 理学::天文学 ; 工学 ; 工学::计算机科学与技术(可授工学、理学学位)
页数75
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25489
专题南方基地
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
王天翔. 基于深度学习的恒星光谱分类[D]. 北京. 中国科学院大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于深度学习的恒星光谱分类.pdf(3123KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王天翔]的文章
百度学术
百度学术中相似的文章
[王天翔]的文章
必应学术
必应学术中相似的文章
[王天翔]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于深度学习的恒星光谱分类.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。