YNAO OpenIR  > 太阳物理研究组
喷流和耀斑中磁重联过程的观测和模拟
其他题名Observations and modelings of the magnetic reconnection process in jets and flares
蔡强伟
学位类型博士
导师林隽
2020-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天体物理
关键词太阳 磁重联 喷流 耀斑 终止激波
摘要磁重联过程与众多太阳爆发活动现象紧密关联。这些现象包括日冕物质抛射、耀斑、爆发日珥、喷流、过渡区爆发事件等。在这些活动现象中,磁重联过程将磁能转化为等离子体的动能和热能以及形成高能粒子束流。在不同的太阳大气环境中,磁场和等离子体的各项物理指标(如温度、密度、和流动速度等) 会有所不同;这种差异性使得与磁重联过程相关联的爆发活动的表现和后果有所不同。在我们的工作中,我们对两个(种)观测到的不同的活动事例分别进行分析研究,同时也利用磁流体动力学数值模拟的结果对观测现象和特征进行了解释和讨论。第一个事例是发生于高色球层的双向喷流事件,第二个事例是爆发过程中在耀斑环顶上方的高温扇形结构。 2014年8月12日,一个瞬变增亮双向喷流事件发生在活动区 NOAA 12135内,并被 SDO 和 IRIS 观测到。该事件在 SDO/AIA 的多个观测波段(94Å、131Å、171Å、和 1600Å)上都有不同程度的增亮表现;同时,喷流的整体演化特征在IRIS SJI 1400 图像中更为清晰,且能够观测到明显的双向流运动特征;另外,在喷流发生的位置处得到的 Si IV 1402Å 谱线轮廓表现出明显的蓝翼不对称性和双峰结构,以及分别高达100 km/s 和160 km/s 的多普勒速度和非热加宽。在天空 平面上,喷流的运动速度分别是26.8 km/s 和33.5 km/s。喷流在天空平面和视线方向上所表现出的双向运动是磁重联的典型观测证据。而且,谱线的不对称性、多普勒 速度、以及非热加宽均表现出明显的振荡特征。利用 EM特性曲线方法和DEM方法对 AIA 数据的分析结果表明,喷流中等离子体中存在多温结构,并且等离子体至少被加热到 105.6 K。通过两种不同的谱线强度比值 (O IV 1399/1401 双线和Si IV 1402/O IV 1401线) 方法推算得到的电子密度约为 1011 cm-3。研究表明,喷流发生在高色球层,是由运动磁结构和周围磁场之间的磁重联引起的。 2017年9月10日,在太阳西边缘产生了一个X8.2级耀斑和一个超快速CME。在爆发过程中,爆发磁结构的几何拓扑呈现出清楚的日冕物质抛射-电流片-耀斑的结构。通过分析 SDO/AIA、IRIS、和 Hinode/EIS 的成像数据以及光谱数据,我们对爆发结构南侧区域内的位于电流片底端和耀斑环之间的扇形结构(supra-arcade fan,SAF)进行了研究。我们发现SAF内的等离子体温度可高达 107 K,密度均值为 3.5 × 109 cm-3。另外,IRIS/SJI 观测到的总辐射的光变曲 线包含明显的准周期振荡特征,振荡周期约为76.8秒。我们利用 Athena程序对典型双带耀斑的磁结构当中的演化细节进行了数值模拟。数值实验在多个方面都重现了观测特征,包括等离子体和磁场结构中的空间分布和演化、湍流、以及SAF内的终止激波。我们的结果表明,SAF是一个高温结构,其内有可能包含着终止激波;而光变曲线的准周期振荡特征表明驱动爆发过程的磁重联是以脉冲间歇的方式进行。 我们在本工作中分析研究的两个爆发事件,尽管它们发生的位置不同,尺度差异,但分析结果表明它们均起源于驱动磁场能量释放的磁重联过程。两个事件中出现的光变曲线振荡、谱线多普勒位移振荡、以及谱线非热加宽的振荡,均表明磁重联过程的湍流特征和性质;这也在一定程度上表明,驱动太阳爆发现象的磁重联过程一般都以湍流的形式进行。
其他摘要Magnetic reconnection is closely related to many solar eruptive activities (e.g., coronal mass ejection (CME), flare, eruption filament, jet, the transition region ex- plosive event, etc.). In these phenomena, the magnetic reconnection process converts magnetic energy into kinetic and thermal energy of the plasma and produces energetic particle beams. Magnetic field and plasma properties (such as, temperature, density, and flow speed) vary from case to case in the solar atmosphere, which may result in different performance and consequences of the eruptive activities governed by mag- netic reconnection. In our works, we concluded observational research on two selected activities, and utilized the results of magnetohydrodynamics (MHD) numerical exper- iments to explain and discuss the observed phenomena and features. The first event is a bi-directional jet that occurred in the upper chromosphere, the second one is a high-temperature fan-shaped structure above the top of the flare loop system in a major eruptive process. On 2014 August 12, a transient brightening bi-directional jet occurred in the active region NOAA 12135 was observed by SDO and IRIS, which provide high spatial- temporal resolution observational data of (extreme) ultraviolet images, spectrum, and magnetogram. The jet was observed in multiple bands of SDO/AIA and manifested clear bi-directional flows in IRIS observations. The emission profiles of the Si IV 1402 Å line of the jet exhibited non-Gaussian feature and double-peak curve, with the Doppler velocity and the non-thermal broadening up to 100 km s-1 and 160 km s-1, respectively. The average flow speeds of the jet on the sky plane were about 26.8 km/s and 33.5 km/s, respectively. The plasma flows of the jet projected on the sky plane and in the line- of-sight (LOS) are the typical observational evidence of magnetic reconnection. The asymmetric feature of spectral line profile, the Doppler velocity, and the non-thermal broadening show clear oscillating feature. The EM loci curves indicated that the plasma contains multi-temperature components. The result deduced from the DEM method and changes in intensity of several spectral lines imply that the temperature of the plasma in the jet could be heated to at least 105.6 K. The electron density was about 1011cm-3 according to the intensity ratios of the O IV 1399.77/1401.16 ÅÅ doublet and Si IV1402.77/O IV 1401.16 ÅÅ lines. We reached the conclusion that the jet occurred in the upper chromosphere, and resulted from the magnetic reconnection between the moving magnetic structure and the magnetic field nearby. On 2017 September 10, a major eruption on the west solar limb produced a class X-8.2 flare and a super fast coronal mass ejection (CME). During the eruptive process, the geometric topology of the erupting magnetic configuration presented a clear CME-current sheet (CS)-flare structure. Analysing the images and spectral data from SDO/AIA, IRIS, and Hinode/EIS, we studied the supra-arcade fan (SAF) region between the bottom of CS and the top of flare loops in the south part of the erupting configuration. Our results indicated that the SAF contained hot plasma of temperature up to 107 K and mean electron density of 3.5×109 cm-3, and the fast variation component (FVC) of the SAF lightcurve shown by the IRIS slit-jaw images (SJI) displayed a quasi- periodic oscillating feature with the period of 76.8 s. We utilized the Athena code to simulate detailed evolutionary features of the magnetic structure of a typical two-ribbon flare. The numerical experiments duplicate observational features in many respects, including the spatial distribution and evolution in structures of the plasma and magnetic field, the turbulence and the termination shock (TS) in the SAF. Our results suggest that the SAF is a high temperature structure that possibly contains the TS. The quasi-periodic oscillating characteristics of the lightcurve indicates that the magnetic reconnection that drives the eruption process is in the impulsive bursty fashion. In this work, we analyzed two explosive events. Although they occurred in different locations and with different spatial scales, the results indicate that they both originated from the magnetic reconnection process that causes the release of the magnetic energy. Oscillations series of the lightcurve, Doppler shift and non-thermal broadening of the spectral lines in two events indicate the turbulent characteristics and nature of the magnetic reconnection process. To some extent, these oscillating features also indicate that the magnetic reconnection process that drives solar eruptions generally takes place in the form of turbulence.
学科领域天文学 ; 太阳与太阳系 ; 太阳物理学
学科门类理学 ; 理学::天文学
页数130
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25485
专题太阳物理研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
蔡强伟. 喷流和耀斑中磁重联过程的观测和模拟[D]. 北京. 中国科学院大学,2020.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
喷流和耀斑中磁重联过程的观测和模拟.pd(18789KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[蔡强伟]的文章
百度学术
百度学术中相似的文章
[蔡强伟]的文章
必应学术
必应学术中相似的文章
[蔡强伟]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 喷流和耀斑中磁重联过程的观测和模拟.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。