YNAO OpenIR  > 天体测量技术及应用研究组
小型望远镜近地小天体自动观测方法研究
其他题名Research on automatic observation method of Near-Earth objects with small telescopes
张冠军
学位类型硕士
导师程向明
2021
学位授予单位中国科学院大学
学位授予地点北京
学位专业天体测量与天体力学
关键词近地小天体 自动观测纲要 曝光时间估算 圆顶随动控制
摘要近地小天体数量众多,尤其是近地小行星对人类社会有着潜在的巨大威胁,近年来国际上对其进行巡天观测的成就大大增加了近地小行星的发现数量。近地小天体的体积和质量普遍偏小,使得其轨道不稳定,因此需要对其进行长期的天文观测,以便不断修正和维持其轨道,从而提高碰撞预测的准确度。对近地小天体的观测需要长期的观测,因此这种类型的观测在中大口径望远镜上难以长期施行,而中小口径望远镜在观测时间的投入上具有优势,适合进行近地小天体观测。要想实现这一观测目标,需要进行长时间大量的观测,观测强度是相当大的,因此自动观测就成为必要的选择。 本文的主要目标是针对近地小天体观测特点,开展在小口径望远镜进行自动观测方法的研究工作,主要工作表现在下列几个方面: 基于MPC的网络数据,获取观测目标信息,自动生成观测纲要MPC(The Minor Planet Center,小行星中心)网站可以提供每晚可观测的近地小行星历表参数,我们通过分析MPC页面数据,编写程序模拟人工提交表单过程,将MPC网站返回的观测目标数据页面内容获取后进行数据匹配和筛选;然后按照望远镜控制软件ACP(Astronomer’s Control Panel,天文控制面板)对纲要指令和目标位置参数格式的要求,生成纲要文件。生成的自动纲要包含了观测控制指令、观测目标的时间和位置信息以及数据采集的相关参数(相机温度、曝光时间等)。在实际测试后,纲要生成程序成功链接到MPC网站的NEO表单页面,输出纲要内的目标信息和网页上的目标信息完全一致。 建立近地小天体自动曝光时间估算模型,为自动纲要提供曝光时间参数由于是对运动目标进行曝光观测,必然会存在星像拖长现象。利用获取到的目标的亮度和运动速度信息,在指定星像信噪比的前提下,建立曝光时间估算模型,为纲要中各目标计算一个估值曝光时间。估算模型以计算CCD靶面上目标星像的信噪比为基本原理,主要考虑CCD相机的噪声、天光背景噪声和目标本身的入射噪声的影响。利用云南天文台1m望远镜进行实测检验,结果表明,使用估算模型得出的曝光时间进行观测,实测的目标星像信噪比和理论计算的信噪比的误差在10%以内。最后对估算模型和误差进行了分析。 搭建自动观测实验平台,验证自动纲要可行性搭建自动观测平台的目的是验证自动纲要的可行性。可行性指的是在任意一个支持ASCOM(Astronomy Common Object Model,天文公共对象模型)平台的小型望远镜系统中,自动观测纲要都是可以运行的,并且可以准确的指向观测目标获取观测图像。实验平台的搭建包括:硬件的安装与调试校准、软件运行环境配置、自动观测纲要。我们在2020年8月5日和6日应用实验平台对221号近地小行星、木星及其卫星、土星及其卫星进行了观测。此次实验时天光背景较亮,得到的实测结果与理论值进行比较,误差在15%以内。 建立稻城50cm望远镜近地小天体观测系统基于上述工作,借助稻城无名山站点的优良观测条件开展近地小天体自动观测工作。拟利用稻城50cm望远镜建立近地小天体自动观测系统,配合远程桌面软件实现远程自动观测。在分析了稻城站点情况后,制定了观测系统的搭建方案:基于ASCOM平台将稻城观测系统进行功能融合。实际主要的工作就是将圆顶融入到ASCOM平台中。为此,我们提出了圆顶控制系统的实现方案,对圆顶进行集成开发——基于ASCOM平台的圆顶驱动程序开发和基于PLC(Programable Logical Controller,可编程控制器)控制器的下位机开发。2020年3月22日,我们对稻城观测系统进行运行测试,通过远程桌面成功获取了自动纲要中的目标“P10XKVP”’,误差为10%,与1m望远镜的误差基本一致。
其他摘要There are a large number of NEOs (Near-Earth Objects), especially NEAs (Near-Earth Asteroids), which pose a great potential threat to the human society. In recent years, the achievements of international sky survey have greatly increased the number of near-Earth asteroids discovered. The size and mass of NEOs are generally small, which makes their orbits unstable. Therefore, long-term astronomical observation is needed to continuously modify and maintain their orbits, so as to improve the accuracy of collision prediction. The observation of NEOs requires long-term observation, so this type of observation is difficult to be carried out for a long time on large and medium-sized telescopes, while small and medium-sized telescopes have advantages in the investment of observation time and are suitable for the observation of NEOs. In order to realize this observation target, a large number of observations are needed for a long time, so the observation intensity is quite large, and automatic observation becomes a necessary choice. The main objective of this paper is to carry out the research of automatic observation method in small aperture telescope, according to the observation characteristics of NEOs. And the main work performance in the following aspects: Based on MPC network data, the observation target information is obtained and the observation outline is automatically generatedThe MPC (The Minor Planet Center) website can provide the parameters of the near-Earth asteroid calendar table that can be observed every night. By analyzing the data on the MPC page, we wrote a program to simulate the manual form submission process, and then obtained the contents of the page of the observed target data returned from the MPC website for data matching and filtering, Then according to the requirement of telescope control software ACP (Astronomer’s Control Panel) for outline instructions and target position parameter format, the outline file is generated. The generated automatic outline includes observation control instructions, observation target time and position information, and data acquisition related parameters (camera temperature, exposure time, etc.). After the actual test, the rundown generator successfully linked to the NEO form page on the MPC website, and the target information in the rundown output was exactly the same as the target information on the page. Establish an automatic exposure time estimation model for NEOs, provides an exposure time parameter for the automatic schema Because it is the exposure observation of moving objects, there must be the phenomenon of star image elongation. Based on the obtained luminance and velocity information of the target, the exposure time estimation model is established on the premise of specifying the signal-to-noise ratio of the star image, and an estimated exposure time is calculated for each target in the outline. Based on the basic principle of calculating the signal-to-noise ratio of the target image on the CCD target surface, the estimation model mainly considers the influence of CCD camera noise, skylight background noise and the incident noise of the target itself. The results show that the signal-to-noise ratio (SNR) of the measured target star image and that of the theoretical calculation are within 10% by using the exposure time obtained by the estimation model. Finally, the estimation model and error are analyzed. Build an automatic observation and experiment platform, verify the feasibility of automatic outline The purpose of building the automatic observation platform is to verify the feasibility of the automatic outline. Feasibility means that in any small telescope system that supports the ASCOM (Astronomy Common Object Model) platform, the automatic observation outline is operational and can accurately point to the observation target to obtain the observation image. The establishment of the experimental platform includes: hardware installation, debugging and calibration, software operation environment configuration, and automatic observation outline. We observed the No.221 asteroid, Jupiter and its moons, and Saturn and their moons on August 5 and 6, 2020, from the Applied Laboratory Platform. In this experiment, the sky light background is relatively bright, and the measured results and theoretical values are compared, with the error within 15%. Establish a NEO observation system for the Daocheng 50cm telescope Based on the above work, the good observation conditions of Wumingshan station in Daocheng were used to carry out the automatic observation of NEO. The Daocheng 50cm telescope is planned to be used to establish an automatic observation system for NEOs, and remote desktop software will be used to realize remote unmanned observation. After analyzing the situation of Daocheng station, the establishment scheme of observation system was formulated: Function fusion of Daocheng observation system was carried out based on ASCOM platform. The actual main job was to integrate the dome into the ASCOM platform. For this reason, we put forward the realization scheme of the dome control system and integrated development of the dome -- dome driver development based on ASCOM platform and lower computer development based on PLC controller (Programable Logical Controller). On March 22, 2020, we carried out operational tests on Daocheng Observation system, and successfully obtained the target "P10XKVP" in the automatic outline through remote desktop, with an error of 10%, which was basically consistent with the error of the 1M telescope.
学科领域天文学 ; 天体力学
学科门类理学 ; 理学::天文学
页数89
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25467
专题天体测量技术及应用研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
张冠军. 小型望远镜近地小天体自动观测方法研究[D]. 北京. 中国科学院大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
小型望远镜近地小天体自动观测方法研究.p(4781KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张冠军]的文章
百度学术
百度学术中相似的文章
[张冠军]的文章
必应学术
必应学术中相似的文章
[张冠军]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 小型望远镜近地小天体自动观测方法研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。