YNAO OpenIR  > 大样本恒星演化研究组
Ia型超新星前身星研究与中等质量脉冲双星的形成
其他题名The progenitors of type Ia supernovae and the formation of intermediate-mass binary pulsars
刘栋栋
学位类型博士
导师王博
2018-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天体物理
关键词双星:密近双星 恒星:演化 超新星 白矮星 中子星
摘要Ia型超新星是宇宙中最为壮观的爆发事件之一,其光度极高且具有高度的一致性,被成功用作标准烛光进而测量宇宙学距离。上个世纪末,基于Ia型超新星测距,人们发现宇宙在加速膨胀,这一发现揭示了暗能量的存在。其次,Ia型超新星是其宿主星系中铁元素的主要来源,而铁元素是星系化学演化的主要驱动力。然而,Ia型超新星的前身星问题仍没得到解决,这将影响其测距精度及当前星系化学演化模型的可靠性。当前有两种流行的Ia型超新星前身星模型,即单简并星模型和双简并星模型。观测上还有一些亚亮的Ia型超新星,这些超新星可以用亚钱德拉塞卡质量双爆轰模型来解释。此外,中等质量脉冲双星是由脉冲星和白矮星组成的双星系统,但是其形成问题尚未得到解决。本论文详细介绍了Ia型超新星的研究背景和研究现状,并系统地介绍了当前流行的Ia型超新星前身星模型和观测限制,还介绍了中等质量脉冲双星形成的研究现状。我们在Ia型超新星的前身星模型方面开展了一系列研究,并对中等质量脉冲双星的形成进行了研究。提出了白矮星+氦亚巨星模型,发现该模型对大质量双白矮星的形成有着显著贡献,可以解释Ia型超新星的延迟时标分布;改进了半相接双星质量转移的计算方法,显著扩大了共生星模型诞生Ia型超新星的参数空间,这有助于解决共生星系统中理论预言低与观测数目较多的矛盾;系统性研究了碳氧白矮星+富氦白矮星并合模型,发现该模型是形成亚亮的类1991bg型超新星的一种可能通道;系统性研究了氧氖白矮星+氦星的吸积致塌缩模型,发现该模型可以解释短轨道周期中等质量脉冲双星的形成。取得的主要研究结果如下:(1)提出了白矮星+氦亚巨星模型,发现该模型对大质量双白矮星系统有显著贡献,更好地再现了观测到的Ia型超新星的延迟时标分布。在该模型中,一颗碳氧白矮星从一颗氦亚巨星吸积富氦物质,从而增加主白矮星质量,当氦亚巨星的富氦包层耗尽时,双星系统就演化为一个大质量双白矮星,随后并合形成Ia型超新星。以前在双简并星模型的研究中并未考虑白矮星+氦亚巨星通道,并且前人的研究都难以解释延迟时标小于1 Gyr和大于8 Gyr的Ia型超新星。发现在考虑了白矮星+氦亚巨星模型后,双简并星模型很好的再现了Ia型超新星的延迟时标分布,尤其是在以前的模型难以解释的部分也能很好地吻合。由双简并星模型得到的Ia型超新星诞生率与观测结果相一致,还发现白矮星+氦亚巨星通道是形成大质量双白矮星系统的主要渠道之一。双白矮星很可能只有在剧烈并合时产生Ia型超新星,发现剧烈并合模型最多对观测上16%的Ia型超新星有贡献,主要产生年老Ia型超新星。(2)改进了半相接双星的质量转移方法,系统地研究了Ia型超新星前身星的共生星模型,显著扩大了该模型诞生Ia型超新星的初始参数空间。观测上有许多共生星系统,其中一些白矮星的质量很大,接近钱德拉塞卡质量(例如RS Oph,T CrB等)。以前的模拟假设红巨星超出洛希瓣的部分立即转移到白矮星表面,质量转移率很高,使得白矮星的质量很难增加到钱德拉塞卡质量极限。因此,前人的模型得到的共生星通道下Ia型超新星的诞生率一直很低,远远低于观测结果。我们改进了质量转移率的计算方法,给出了共生星模型下诞生Ia型超新星的参数空间、诞生率和延迟时标分布等。与以前的模型相比,我们得到的Ia型超新星参数空间和诞生率都有了显著的提高,发现共生星通道对中等年龄和年老的Ia型超新星都有贡献,还发现共生星系统RS Oph和T CrB都将形成Ia型超新星。(3)系统性研究了Ia型超新星前身星的碳氧白矮星+富氦白矮星并合模型,发现该模型是形成亚亮类1991bg型超新星的一种可能通道。富氦白矮星包括氦白矮星和氦碳氧混合白矮星,其中氦碳氧混合白矮星是由碳氧核和富氦壳层构成的一类白矮星。在碳氧白矮星与富氦白矮星并合过程中,富氦壳层在碳氧核表面发生爆轰,冲击波挤压碳氧核,进而引起碳氧白矮星的热核爆炸,形成亚亮的Ia型超新星。然而,目前没有相关的大样本恒星演化研究。系统性研究了碳氧白矮星+富氦白矮星并合模型,发现通过该模型形成的Ia型超新星的诞生率最多占观测结果的15%,主要对中等年龄和年老Ia型超新星有贡献。与正常Ia型超新星相比,类1991bg型超新星的峰值光度较低、光变曲线的下降速度更快。发现碳氧白矮星+富氦白矮星并合模型再现了类1991bg型超新星的诞生率,可以解释这类超新星的延迟时标分布等,是产生类1991bg型超新星的一种可能通道。(4)系统地研究了氧氖白矮星+氦星的吸积致塌缩模型,发现该模型可以解释观测上的短轨道周期中等质量脉冲双星。中等质量脉冲双星包括一颗中子星和一颗白矮星,中子星的自转周期在10到200毫秒之间,白矮星的质量大于0.4个太阳质量。然而,短轨道周期的中等质量脉冲双星的形成问题一直没有得到很好的解决,以前的模型最多只能解释一部分观测到的短轨道周期中等质量脉冲双星。系统地研究了氧氖白矮星和氦星系统的吸积致塌缩模型,给出了形成吸积致塌缩型超新星的初始参数空间,以及吸积致塌缩后形成的中子星+氦星系统和最终形成的中等质量脉冲双星的参数空间,发现该模型可以解释观测上几乎所有的短轨道周期中等质量脉冲双星。我们还给出了脉冲双星PSR J0621+1002的一种可能的演化历史,得到的该双星系统现价段的参数与观测吻合地很好。HD 49798的致密伴星的类型一直不清楚,推测其伴星很可能是一颗白矮星而非中子星。
其他摘要Type Ia supernovae (SNe Ia) are among the most powerful phenomena in the universe. Owing to the remarkable uniformity of their high luminosity, SNe Ia are successfully used as standard candles to measure cosmological distances. It has been verified that the Universe is expanding at an increasing rate based on the observations of SNe Ia, leading to the discovery of dark energy. Meanwhile, most of the iron in the host galaxy are produced by SN Ia explosions. However, the progenitors of SNe Ia remain unclear, which may affect the accuracy of distance measurement and the reliability of current galaxy chemical evolution models. The most popular progenitor models for SNe Ia are the single-degenerate (SD) model and the double-degenerate (DD) model. There are also some sub-luminous SNe Ia in the observations, which can be explained by the double-detonation model. In addition, intermediate-mass binary pulsars (IMBPs) are composed of a neutron star (NS) and a white dwarf (WD). However, the formation channels of IMBPs are still not fully conformed.In this thesis, we introduced the backgrounds and research status of SNe Ia in details, and reviewed their progenitor models and observational constraints. We also introduced the backgrounds of IMBPs. We have conducted a series of investigations on the progenitors of SNe Ia and the formation of IMBPs. We proposed the WD+heluim (He) subgiant model, and found that this model has a significant contribution to the formation of double massive WDs and the delay time distributions of SNe Ia can be reproduced. We improved the prescription for the mass-transfer of semidetached binaries, and found that the parameter space for producing SNe Ia via the symbiotic channel is significantly enlarged, which is useful for solving the contradiction between the low predicted rate and the large number of observed symbiotic systems. We systematically investigated the carbon-oxygen (CO) WD+He-rich WD merging model, and found that this model is a possible path for producing sub-luminous 1991bg like events. We systematically studied the accretion-induced collapse (AIC) model of oxygen-neon (ONe) WD+He star systems, and found that this model can explain the formation of IMBPs. The main results are provided as follows:(1) We proposed the WD+He subgiant model that has significant contribution to the formation of double massive WDs, and found that the observed delay time distributions of SNe Ia can be reproduced. In this model, a CO WD accretes He-rich matter from a He subgiant star, leading to the mass increase of the WD. When the He-shell of the He subgiant is exhausted, the binary becomes a massive double WD system. The merging of the formed double WDs may produce SNe Ia. Previous studies on the DD model have not considered the WD+He subgiant channel, and those studies have deficit with the observed SNe Ia with delay times shorter than 1 Gyr and longer than 8 Gyr. We found that the delay time distribution of SNe Ia can be reproduced better after considering the WD$+$He subgiant channel, and the SN Ia rate from the DD model is consistent with the observed results. It has been suggested that the violent WD merger is more likely to produce SNe Ia based on the DD model. We found that the violent WD merger model may contribute to at most 16% of all SNe Ia, and this model mainly produce SNe Ia in old populations.(2) We improved the prescription for the mass-transfer in semidetached binaries, and systematically investigate the symbiotic model for producing SNe Ia. We found that the initial parameter space for producing SNe Ia via this model is significantly enlarged. In the observations, there are many symbiotic systems, in which some of these systems have massive WDs with masses near to the Chandrasekhar limit (e.g. RS Oph, T Crb). However, the predicted rate of SNe Ia is relatively low. Previous studies usually assumed that the exceeding mass of the RG star would be immediately transferred, leading to a relatively high mass-transfer rate, preventing the WD from increasing its mass to the Chandrasekhar limit. We improved the prescription for mass-transfer process, and obtained the parameter space, rates and delay time distributions of SNe Ia from the symbiotic channel. Compared with previous models, the parameter space and the predicted rates are significantly enlarged. We also found that this model may contribute to SNe Ia in the intermediate and old populations, and the symbiotic systems RS Oph and T CrB will form SN Ia explosions via the symbiotic model.(3) We systematically investigated the CO WD+He-rich WD model, and found that this merging model is a possible pathway for the formation of sub-luminous SN 1991bg-like events. He-rich WDs include He WDs and hybrid HeCO WDs, in which a hybrid HeCO WD contains a CO core and a He-rich shell. During the merging process, the He-rich envelope detonates on the surface of the CO WD when it is thick enough. The shock wave into the CO core would trigger a second detonation of the whole CO WD, leading to the formation of sub-luminous SNe Ia. However, there are still very few binary population synthesis studies on the CO WD+He-rich WD model. We systematically studied this merging model, and found that this model may contribute to at most 15% of all SNe Ia, mainly producing SNe Ia in intermediate and old populations. Compared with normal SNe Ia, SN 1991bg-like events are fainter and their light curves decline faster. We also found that the CO WD+He-rich WD merging model can reproduce the observed rates of SN 1991bg-like events, and can explain the delay time distributions of these events, which indicates that this merging model is a possible formation channel for SN 1991bg-like events.(4) We systematically studied the AIC model of ONe WD+He star systems, and found that this model can explain the observed IMBPs with short orbital periods. IMBPs are composed of a NS and a WD, in which the spin periods of NSs are in the range of 10-200 ms and the masses of the WDs are larger than 0.4 Msun. However, the formation of IMBPs is still under debate. Previous studies can only account for part of IMBPs with short orbital periods. According to the AIC model of ONe WD+He star systems, we provided the initial parameter space, the parameter space of formed NS+He star systems after AIC and the eventually formed IMBPs, and found that almost all of the observed IMBPs with short orbital periods can be covered by this model. We also obtained a possible evolutionary path for PSR J0621+1002, and found that the observed parameters of PSR J1802-2124 can be well reproduced. We also speculated that the compact companion of HD 49798 may be a WD but not a NS.
学科领域天文学 ; 恒星与银河系 ; 恒星形成与演化
学科门类理学 ; 理学::天文学
页数118
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25414
专题大样本恒星演化研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
刘栋栋. Ia型超新星前身星研究与中等质量脉冲双星的形成[D]. 北京. 中国科学院大学,2018.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Ia型超新星前身星研究与中等质量脉冲双星(11945KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘栋栋]的文章
百度学术
百度学术中相似的文章
[刘栋栋]的文章
必应学术
必应学术中相似的文章
[刘栋栋]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Ia型超新星前身星研究与中等质量脉冲双星的形成.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。