YNAO OpenIR  > 抚仙湖太阳观测和研究基地
日面磁场的变化及其对太阳总辐照度的影响
其他题名The Variation of Solar Surface Magnetic Field and Its Influence on The Variability of Total Solar Irradiance
徐景晨
学位类型博士
导师李可军
2018
学位授予单位中国科学院大学
学位授予地点北京
培养单位中国科学院云南天文台
学位专业天体物理
关键词太阳磁场 太阳活动 太阳辐照度 黑子 光斑
摘要太阳辐照度的变化是太阳自身的一个基本特征,与黑子、光斑等太阳活动现象,以及日面磁场的变化有着密切的关系,它在很大程度上决定了日地空间环境和地球高空大气结构。越来越多的证据表明,它也是引起地球长期气候变化的关键因素之一。在太阳总辐照度(TSI)的观测上,目前已经积累了近39年的空间观测数据;这些数据表明,TSI在所有能够进行观测的时间尺度上都是在变化的。目前认为,太阳辐照度在一天到一个太阳周时间尺度上的变化主要是由日面磁场的变化所引起的;引起辐照度变化的磁结构主要包括黑子、光斑和网状结构等。本论文利用黑子数(SN)、不同流量范围的日面磁场数据、TSI数据等研究了日面磁场的变化规律,及其对TSI的影响。论文的主要工作包括:1. 利用每日SN和两组TSI合成数据,对它们之间的关系进行了深入分析。数据的时间范围跨越了第21到24四个太阳活动周。我们对全部数据及各个独立太阳周的数据进行了交叉相关分析和自助抽样法分析。结果发现,TSI与SN是正相关的、前者在相位上滞后后者约29天,即一个自转周期;对四个太阳周内数据单独的分析发现,第21、23和24周TSI相对SN的滞后值都接近29天;而在第22周,滞后值仅为21.8~22.3天,显著地小一些。我们认为,第22周的这一异常结果可能是由太阳黑子磁场的强度变化所引起:其在最近的9~10个太阳周的时间里,一直增强、并在第22周达到极大;从第22周至今一直减弱。黑子磁场强度的变化会影响其对比度、导致对TSI的影响也会因此变化。我们进而研究了它们之间的非线性关系,并利用磁结构演化特征解释了其原因,更正了前人的解释。最后,利用交叉小波变换和小波调谐方法对它们的非线性关系进行了进一步的分析。结果表明,只有在太阳活动周时间尺度及自转周期局部区域上,TSI与SN才显示出共同的周期性。短于3个自转周期的尺度上,相关性很低。从3个自转周到约4年尺度上,黑子和光斑的短期效应被平滑掉了,因此在局部区域的相关性(coherence)达到95%置信水平以上。在4年时间尺度以上,TSI与SN 的相关性均高于95%,且它们是同相位的。这些结论给TSI的长期重构带来一定的帮助。2. 利用从第23太阳周的MDI/\textit{SOHO}磁图提取的六类不同强度范围的光球磁流数据(前四类MF$_{1\sim4}$:$(1.5-2.9)\times10^{18}$, $(2.9-32.0)\times10^{18}$, $(3.20-4.27)\times10^{19}$, 和 $(4.27-38.01)\times10^{19}$,单位Mx/磁元,以及活动区MF$_\textrm{ar}$和宁静区MF$_\textrm{qr}$),首次对特定流量范围磁场的自转周期变化特征和相位差异进行了研究。Lomb-Scargle周期图法结果表明,MF$_2$、MF$_4$、MF$_\textrm{ar}$和MF$_\textrm{qr}$都显示出显著的自转周期,周期值分别为26.20、26.23、26.66和26.24天。MF$_1$和MF$_3$都没有显示出显著的自转周期。MF$_2$、MF$_4$和MF$_\textrm{qr}$的自转周期很接近,而MF$_\textrm{ar}$的要长一些,这表明,活动区磁场转动得比宁静区磁场及更弱的磁场要慢一些;对此给出了解释。在太阳自转周期时间尺度上的拟合结果表明,MF$_\textrm{ar}$分别领先MF$_2$、MF$_4$ 5天和1天;这一结果进一步被交叉相关分析证实了。然而,通过交叉相关图得到的 MF$_\textrm{qr}$ 与 MF$_\textrm{ar}$ 的相位差异,与用拟合得到的结果不一致。我们认为,平均来说活动区大约一天后演化并退消为MF$_4$范围的磁场,5天后成为MF$_2$范围的磁场;这一规律与黑子寿命特征相一致。在太阳活动周时间尺度上,MF$_2$与MF$_\textrm{ar}$是反相关的,前者滞后后者350天(约1年)。MF$_4$ 与MF$_\textrm{ar}$是正相关的,前者滞后82天(约3个自转周)。产生这个相位差异的原因尚不明确。我们猜测,MF$_2$的磁场主要来自高纬,或者主要是从日面下的剪切层浮现而来。MF$_\textrm{ar}$ 与 MF$_4$的相位关系显示,后者的磁流量可能部分地来自于前者,即MF$_4$的弱磁场部分来自于活动区的演化。3. 利用上述光球磁流量(MF)数据,我们研究了不同强度磁场对TSI的调制作用。交叉相关分析表明,MF$_2$与TSI是反相关的,而MF$_4$、MF$_\textrm{ar}$、MF$_\textrm{qr}$与TSI都是正相关的;MF$_1$和MF$_3$都与TSI不相关。它们的相关系数的变化显示出明显的自转周期调制作用。利用自助抽样法对相关系数(CC)进行检验发现,MF$_4$对TSI变化的影响比活动区和宁静区更显著。MF$_4$与TSI的比MF$_\textrm{ar}$ 和 MF$_\textrm{qr}$与TSI的都大,这意味着MF$_\textrm{ar}$与TSI 的CC在0滞后附近的凹陷表明,虽然MF$_\textrm{ar}$总体上是增强TSI的、它有一部分磁流会对TSI产生即时的反作用(减弱TSI);我们推断是源自黑子的暗化效应。MF$_4$、MF$_\textrm{qr}$在0滞后附近的峰值显示它们对TSI即时效应是正的。由MF$_\textrm{ar}$与TSI之间的交叉相关图和自助抽样法结果可知,前者滞后后者27天、或约一个自转周期的时间。这是由黑子、光斑不同的寿命和对TSI不同的影响效果造成的;它们是在自转周期尺度上影响TSI的主要磁结构。利用有自适应噪声的完全总体经验模式分解方法提取了MF和TSI里的自转周期变化成分,然后分别在太阳活动极大期和极小期、清晰地呈现出MF对TSI在太阳自转周期时间尺度上的调制作用,并对它们进行了比较。MF和TSI在太阳峰年的的相对变化幅度比它们在谷年时的大得多。在太阳活动极大期,MF$_4$和MF$_\textrm{ar}$与TSI都是同相位的;而MF$_2$与TSI不管是在极大期还是极小期都是反相关的。单一黑子对MF和TSI的调制作用得到了清晰的呈现,且在卡林顿第2068自转周期进行了详细描述。对MF和TSI太阳周内长期变化成分相对振幅的比较表明,TSI的变化与MF$_4$和MF$_\textrm{ar}$非常一致,而MF$_2$与TSI是反相位的、且滞后TSI约1.5年。这些结果加深了我们对日面磁场与TSI的关系的理解。
其他摘要The variation of the total solar irradiance (TSI) is a basic characteristic of the Sun itself; to a great extent, it shaped the solar-terrestrial space environment and the structure of the Earth's upper atmosphere. TSI varies on all timescales on which it has been observed, and there is increasing evidence that it is one of the key factor that influence the climate. Early measurements of TSI on the ground are all subject to the obstruction of the Earth's atmosphere, and the real value of the TSI can not be obtained; therefore, it is impossible to investigate its variations. Since late 1978, observations of TSI with electrically calibrated radiometers from space have provided overlapping time series from different missions up to the present. This allows the construction of a continuous record for nearly 40 years. The measurements show that TSI varies on all timescales on which it has been observed, and the main drivers of TSI variability are thought to be magnetic features at the solar surface. In this thesis, data of sunspot numbers, surface magnetic flux, and TSI observations are used to study the variation of the photospheric magnetic field, as well as its influence on TSI. The main findings are summarized as below:1. Phase relations of the sunspot numbers (SN) and two TSI composite data are investigated. It is found that TSI and SN are positively correlated, and the former lags the latter by about 29 days which is about a solar rotation period; analyses of the four individual cycles show that, in solar cycle 21, 23, and 24, TSI lags SN by 28.9?30.3 days, while in solar cycle 22, the lag is only 21.8?22.3 days. The abnormality in solar cycle 22 is probably caused by its stronger magnetic field in sunspots compared with its adjacent cycles. The nonlinearity between TSI and SN is confirmed and interpreted here as the combination of the short-term effect of sunspots and faculae, and the long-term effect of magnetic network. The non-linear relation is further studied with the cross-wavelet transform and wavelet coherence methods. The common periodicity of TSI and SN at timescale of the solar cycle is clearly revealed, and high common power at timescale of the rotational period only intermittently appears around solar maxima. The variations of TSI and SN indicates significant coherence at timescales larger than about 4 years. Both the cross-wavelet transform and wavelet coherence analyses shown a high level of phase synchronization between TSI and SN with coherent phase angles in the low- frequency components corresponding to period scales around the dominating 11-year cycle, and their high-frequency components show a noisy behavior with strong phase mixing.2. The rotational characteristics of the solar photospheric magnetic field at four flux ranges are investigated together with the total flux of active regions (MF$_{ar}$) and quiet regions (MF$_{qr}$). The first four ranges (MF$_{1-4}$) are $(1.5-2.9)\times10^{18}$, $(2.9-32.0)\times10^{18}$, $(3.20-4.27)\times10^{19}$, and $(4.27-38.01)\times10^{19}$, respectively (the unit is Mx per element). Daily values of the flux data are extracted from magnetograms of the Michelson Doppler Imager on board the \textit{Solar and Heliospheric Observatory}. Lomb-Scargle periodograms shown that only MF$_2$, MF$_4$, MF$_{qr}$, and MF$_{ar}$ exhibit rotational periods. The periods of the first three types of flux are much very similar, i.e., 26.20, 26.23, and 26.24 days, respectively, while that of MF$_{ar}$ is larger, 26.66 days. This indicates that active regions rotate more slowly than quiet regions on average, and strong magnetic fields tend to repress the surface rotation. Sinusoidal function fittings and cross-correlation analyses reveal that MF$_{ar}$ leads MF$_2$ and MF$_4$ by 5 and 1 days, respectively. This is speculated to be related with the decaying of active regions. MF$_2$ and MF$_{ar}$ are negatively correlated, while both MF$_4$ and MF$_{qr}$ are positively correlated with MF$_{ar}$. At the timescale of the solar activity cycle, MF$_{ar}$ leads (negatively) MF$_2$ by around one year (350 days), and leads MF$_4$ by about 3 rotation periods (82 days). The relation between MF$_2$ and MF$_{ar}$ may be explained by the possibility that the former mainly comes form a higher latitude, or emerges from the subsurface shear layer. We conjecture that MF$_4$ may partly come from the magnetic flux of active regions; this verifies previous results that were obtained with indirect solar magnetic indices.3. Solar photospheric magnetic field plays a dominant role in the variability of total solar irradiance (TSI). The modulation of six categories of magnetic flux at specific ranges on TSI is characterized for the first time. Daily flux values of magnetic field at four ranges (MF$_{1-4}$) are extracted from MDI/SOHO, together with daily flux of active regions (MF$_\textrm{ar}$) and quiet regions (MF$_\textrm{qr}$). Cross-correlograms show that MF$_4$, MF$_\textrm{qr}$, and MF$_\textrm{ar}$ are positively correlated with TSI, while MF$_2$ is negatively correlated with TSI; the correlations between MF$_1$, MF$_3$ and TSI are insignificant. The correlation coefficient between MF$_4$ and TSI (0.76) is larger than that of MF$_\textrm{ar}$ (0.70) and MF$_\textrm{qr}$ (0.64), and it is further confirmed with the bootstrapping test, which implies that the impact of MF$_4$ on TSI is dominant. MF$_\textrm{ar}$ leads TSI by a solar rotational cycle, which is also confirmed with the bootstrapping test. The $\sim$27-day rotational variations in the flux data sets and TSI are clearly identified with the mode decomposition method, and the modulation of the magnetic flux on TSI is characterized at the rotational timescale. During solar maximum time, the relative amplitudes of the flux and TSI are much larger than that during solar minimum time. The negative correlation between MF$_\textrm{ar}$ and TSI at solar maximum time implies the instant darkening effect of sunspots. During solar minimum time, both MF$_\textrm{ar}$ and MF$_4$ are positively correlated with TSI. The impact of MF$_2$ on TSI is found to be similarly negative during either maximum or minimum at different timescales. The impact of a unique active region on TSI is depicted with the 2008 outburst. The amplitudes of the long-term variations of MF$_4$ and MF$_\textrm{ar}$ are in good agreement with TSI, while that of MF$_2$ lags TSI by about 1.5 years. These phenomena are explained with the evolution and property of magnetic features on the solar surface. These results deepen our understanding of the relation between solar surface magnetic field and TSI.
学科领域天文学 ; 太阳与太阳系
学科门类理学 ; 理学::天文学
页数104
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25370
专题抚仙湖太阳观测和研究基地
推荐引用方式
GB/T 7714
徐景晨. 日面磁场的变化及其对太阳总辐照度的影响[D]. 北京. 中国科学院大学,2018.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
日面磁场的变化及其对太阳总辐照度的影响.(12121KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[徐景晨]的文章
百度学术
百度学术中相似的文章
[徐景晨]的文章
必应学术
必应学术中相似的文章
[徐景晨]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 日面磁场的变化及其对太阳总辐照度的影响.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。