A robust RFI identification for radio interferometry based on a convolutional neural network | |
Sun, Haomin1,2; Deng, Hui1,2; Wang, Feng1,2; Mei, Ying1,2; Xu, Tingting1,2; Smirnov, Oleg3; Deng LH(邓林华)4; Wei, Shoulin5 | |
发表期刊 | MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY |
2022-03-24 | |
卷号 | 512期号:2页码:2025-2033 |
DOI | 10.1093/mnras/stac570 |
产权排序 | 第4完成单位 |
收录类别 | SCI ; EI |
关键词 | methods: data analysis techniques: interferometric |
摘要 | The rapid development of new generation radio interferometers such as the Square Kilometer Array (SKA) has opened up unprecedented opportunities for astronomical research. However, anthropogenic radio frequency interference (RFI) from communication technologies and other human activities severely affects the fidelity of observational data. It also significantly reduces the sensitivity of the telescopes. We proposed a robust convolutional neural network (CNN) model to identify RFI based on machine-learning methods. We overlaid RFI on the simulation data of SKA1-LOW to construct three visibility function data sets. One data set was used for modelling, and the other two were used for validating the model's usability. The experimental results show that the area under the curve reaches 0.93, with satisfactory accuracy and precision. We then further investigated the effectiveness of the model by identifying the RFI in the actual observational data from LOFAR and MeerKAT. The results show that the model performs well. The overall effectiveness is comparable to AOFlagger software and provides an improvement over existing methods in some instances. |
资助项目 | National SKA Program of China[2020SKA0110300] ; Funds for International Cooperation and Exchange of the National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11961141001] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11903009] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U1931141] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U1831204] ; Innovation Research for the Postgraduates of Guangzhou University[2020GDJC-D20] ; Fundamental and Application Research Project of Guangzhou[202102020677] ; Astronomical Big Data Joint Research Center ; Chinese Academy of Sciences (CAS)Chinese Academy of Sciences[U1931141] ; Chinese Academy of Sciences (CAS)Chinese Academy of Sciences[U1831204] |
项目资助者 | National SKA Program of China[2020SKA0110300] ; Funds for International Cooperation and Exchange of the National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11961141001] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11903009, U1931141, U1831204] ; Innovation Research for the Postgraduates of Guangzhou University[2020GDJC-D20] ; Fundamental and Application Research Project of Guangzhou[202102020677] ; Astronomical Big Data Joint Research Center ; Chinese Academy of Sciences (CAS)Chinese Academy of Sciences[U1931141, U1831204] |
语种 | 英语 |
学科领域 | 天文学 ; 射电天文学 ; 射电天文方法 ; 射电天文学其他学科 ; 计算机科学技术 ; 计算机应用 |
文章类型 | Article |
出版者 | OXFORD UNIV PRESS |
出版地 | GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND |
ISSN | 0035-8711 |
URL | 查看原文 |
WOS记录号 | WOS:000773022100014 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | FREQUENCY INTERFERENCE MITIGATION ; REIONIZATION |
EI入藏号 | 20221712011962 |
EI主题词 | Radio interference |
EI分类号 | 716.1 Information Theory and Signal Processing - 716.3 Radio Systems and Equipment - 941.3 Optical Instruments - 941.4 Optical Variables Measurements |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/25001 |
专题 | 抚仙湖太阳观测和研究基地 |
通讯作者 | Deng, Hui; Wang, Feng |
作者单位 | 1.Center For Astrophysics, Guangzhou University, Guangzhou 510006, PR China; 2.Great Bay Center, National Astronomical Data Center, Guangzhou, Guangdong 510006, PR China; 3.Department of Physics and Electronics, Rhodes University, PO Box 94, Makhanda 6140, South Africa; 4.Yunnan Observatory, Chinese Academy of Sciences, Kunming, Yunnan, 650216, PR China; 5.Key Lab Of Computer Technology Appliance, Kunming University of Science And Technology, Kunming, Yunnan 650500, PR China |
推荐引用方式 GB/T 7714 | Sun, Haomin,Deng, Hui,Wang, Feng,et al. A robust RFI identification for radio interferometry based on a convolutional neural network[J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,2022,512(2):2025-2033. |
APA | Sun, Haomin.,Deng, Hui.,Wang, Feng.,Mei, Ying.,Xu, Tingting.,...&Wei, Shoulin.(2022).A robust RFI identification for radio interferometry based on a convolutional neural network.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,512(2),2025-2033. |
MLA | Sun, Haomin,et al."A robust RFI identification for radio interferometry based on a convolutional neural network".MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 512.2(2022):2025-2033. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
A robust RFI identif(1330KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论