YNAO OpenIR  > 大样本恒星演化研究组
The Spectroscopic Binaries from the LAMOST Medium-resolution Survey. I. Searching for Double-lined Spectroscopic Binaries with a Convolutional Neural Network
Zhang, Bo1; Jing, Ying-Jie2; Yang, Fan1; Wan, Jun-Chen3; Ji, Xin4,5; Fu, Jian-Ning1; Liu, Chao6; Zhang, Xiao-Bin4; Luo, Feng4,5; Tian, Hao6; Zhou, Yu-Tao7,8; Wang, Jia-Xin1; Guo YJ(郭彦君)5,9,10; Zong, Weikai1; Xiong, Jian-Ping4,5; Li, Jiao4
发表期刊ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
2022-02-01
卷号258期号:2
DOI10.3847/1538-4365/ac42d1
产权排序第9完成单位
收录类别SCI
摘要

We developed a convolutional neural network model to distinguish the double-lined spectroscopic binaries (SB2s) from others based on single-exposure medium-resolution spectra (R similar to 7500). The training set consists of a large set of mock spectra of single stars and binaries synthesized based on the MIST stellar evolutionary model and ATLAS9 atmospheric model. Our model reaches a novel theoretic false-positive rate by adding a proper penalty on the negative sample (e.g., 0.12% and 0.16% for the blue/red arm when the penalty parameter ? = 16). Tests show that the performance is as expected and favors FGK-type main-sequence (MS) binaries with high mass ratio (q >= 0.7) and large radial velocity separation (Delta v >= 50 km s(-1)). Although the real false-positive rate cannot be estimated reliably, validating on eclipsing binaries identified from Kepler light curves indicates that our model predicts low binary probabilities at eclipsing phases (0, 0.5, and 1.0) as expected. The color-magnitude diagram also helps illustrate its feasibility and capability of identifying FGK MS binaries from spectra. We conclude that this model is reasonably reliable and can provide an automatic approach to identify SB2s with period less than or similar to 10 days. This work yields a catalog of binary probabilities for over 5 million spectra of 1 million sources from the LAMOST medium-resolution survey (MRS) and a catalog of 2198 SB2 candidates whose physical properties will be analyzed in a follow-up paper. Data products are made publicly available online, as well as our Github website.

资助项目National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC)[11833002] ; National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC)[12090040] ; National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC)[12090042] ; Beijing Natural Science FoundationBeijing Natural Science Foundation[1214028] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U2031143] ; Fundamental Research Funds for the central universitiesFundamental Research Funds for the Central Universities ; NSFCNational Natural Science Foundation of China (NSFC)[11903005] ; Cultivation Project for LAMOST Scientific Payoff and Research Achievement of CAMS-CAS ; National Development and Reform Commission
项目资助者National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC)[11833002, 12090040, 12090042] ; Beijing Natural Science FoundationBeijing Natural Science Foundation[1214028] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U2031143] ; Fundamental Research Funds for the central universitiesFundamental Research Funds for the Central Universities ; NSFCNational Natural Science Foundation of China (NSFC)[11903005] ; Cultivation Project for LAMOST Scientific Payoff and Research Achievement of CAMS-CAS ; National Development and Reform Commission
语种英语
学科领域天文学 ; 恒星与银河系
文章类型Article
出版者IOP Publishing Ltd
出版地TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
ISSN0067-0049
URL查看原文
WOS记录号WOS:000743715800001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]DETACHED ECLIPSING BINARY ; SOLAR-TYPE STARS ; STELLAR SPECTRA ; DWARF STARS ; MULTIPLICITY ; APOGEE ; RAVE ; CLASSIFICATION ; CANDIDATES ; FRACTIONS
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/24792
专题大样本恒星演化研究组
中国科学院天体结构与演化重点实验室
通讯作者Zhang, Bo
作者单位1.Department of Astronomy, Beijing Normal University, Beijing 100875, People's Republic of China; [email protected];
2.Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, People's Republic of China;
3.Kuaishou Technology, Beijing 100085, People's Republic of China;
4.Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, People's Republic of China;
5.School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China;
6.Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, People's Republic of China;
7.Department of Astronomy, School of Physics, Peking University, Beijing 100871, People's Republic of China;
8.Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People's Republic of China;
9.Yunnan Observatories, Chinese Academy of Sciences, Kunming, 650011, People's Republic of China;
10.Key Laboratory for Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, People's Republic of China
推荐引用方式
GB/T 7714
Zhang, Bo,Jing, Ying-Jie,Yang, Fan,et al. The Spectroscopic Binaries from the LAMOST Medium-resolution Survey. I. Searching for Double-lined Spectroscopic Binaries with a Convolutional Neural Network[J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES,2022,258(2).
APA Zhang, Bo.,Jing, Ying-Jie.,Yang, Fan.,Wan, Jun-Chen.,Ji, Xin.,...&Li, Jiao.(2022).The Spectroscopic Binaries from the LAMOST Medium-resolution Survey. I. Searching for Double-lined Spectroscopic Binaries with a Convolutional Neural Network.ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES,258(2).
MLA Zhang, Bo,et al."The Spectroscopic Binaries from the LAMOST Medium-resolution Survey. I. Searching for Double-lined Spectroscopic Binaries with a Convolutional Neural Network".ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES 258.2(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
The Spectroscopic Bi(9981KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Bo]的文章
[Jing, Ying-Jie]的文章
[Yang, Fan]的文章
百度学术
百度学术中相似的文章
[Zhang, Bo]的文章
[Jing, Ying-Jie]的文章
[Yang, Fan]的文章
必应学术
必应学术中相似的文章
[Zhang, Bo]的文章
[Jing, Ying-Jie]的文章
[Yang, Fan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: The Spectroscopic Binaries from the LAMOST Medium-resolution Survey. I. Searching for Double-lined Spectroscopic Binaries with a Convolutional Neural Network.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。