A machine-learning method to derive the parameters of contact binaries | |
Ding X(丁旭)1,2,3,4; Ji KF(季凯帆)1,2,3,4; Li XZ(李旭志)1,2,3,4 | |
发表期刊 | PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN |
2021-08 | |
卷号 | 73期号:4页码:786-794 |
DOI | 10.1093/pasj/psab042 |
产权排序 | 第1完成单位 |
收录类别 | SCI ; EI |
关键词 | binaries: eclipsing methods: data analysis methods: statistical |
摘要 | Contact binary stars are important research objects in astrophysics. The calculation speed of deriving the parameters of contact binaries with the Wilson-Devinney program and the Phoebe with Markov chain Monte Carlo (MCMC) program is relatively slow. It is unrealistic to derive the parameters in batches with the program for sky survey data. We obtain a neural network model of supervised learning with the training of synthetic light curves with Phoebe. We calculate the parameters of eight special targets from the simulated data and the Kepler data. Then, we generate the new light curve to fit the light curve of the special target base on these parameters. The correlation index R-2 of the fitting result is more than 0.98. The method can be used to fit the target which has orbital inclinations greater than 50 . By fitting the Kepler data and the observed data on the ground, the method has a good generalization ability to these targets, which have some noise and some starspots. The calculation speed of one light curve with this method is less than seconds. We can derive the parameters quickly in batches to undertake some statistical work for sky survey data with the method. |
资助项目 | Chinese Natural Science FoundationNational Natural Science Foundation of China (NSFC)[12073077] ; Chinese Natural Science FoundationNational Natural Science Foundation of China (NSFC)[11873027] ; Chinese Natural Science FoundationNational Natural Science Foundation of China (NSFC)[11803087] ; Chinese Academy of SciencesChinese Academy of Sciences[Y8XB018001] ; project of Yunnan Science and Technology Department[202003AD150003] |
项目资助者 | Chinese Natural Science FoundationNational Natural Science Foundation of China (NSFC)[12073077, 11873027, 11803087] ; Chinese Academy of SciencesChinese Academy of Sciences[Y8XB018001] ; project of Yunnan Science and Technology Department[202003AD150003] |
语种 | 英语 |
学科领域 | 天文学 ; 恒星与银河系 ; 计算机科学技术 ; 人工智能 ; 计算机应用 |
文章类型 | Article |
出版者 | OXFORD UNIV PRESS |
出版地 | GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND |
ISSN | 0004-6264 |
URL | 查看原文 |
WOS记录号 | WOS:000728400300003 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | LIGHT CURVES ; STARS |
EI入藏号 | 20220411500462 |
EI主题词 | Astrophysics |
EI分类号 | 657.2 Extraterrestrial Physics and Stellar Phenomena - 922.1 Probability Theory |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/24723 |
专题 | 南方基地 双星与变星研究组 中国科学院天体结构与演化重点实验室 天文技术实验室 |
通讯作者 | Ji KF(季凯帆) |
作者单位 | 1.Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650216 Kunming, China; 2.Key Laboratory of the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, P.O. Box 110, 650216 Kunming, China; 3.Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012, China; 4.University of the Chinese Academy of Sciences, Yuquan Road 19#, Shijingshan Block, 100049 Beijing, China |
第一作者单位 | 中国科学院云南天文台 |
通讯作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | Ding X,Ji KF,Li XZ. A machine-learning method to derive the parameters of contact binaries[J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN,2021,73(4):786-794. |
APA | Ding X,Ji KF,&Li XZ.(2021).A machine-learning method to derive the parameters of contact binaries.PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN,73(4),786-794. |
MLA | Ding X,et al."A machine-learning method to derive the parameters of contact binaries".PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN 73.4(2021):786-794. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
A machine-learning m(4024KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论