Mapping Solar X-Ray Images from SDO/AIA EUV Images by Deep Learning | |
Hong JC(洪俊超)1,2,3; Liu H(刘辉)1,2; Bi Y(毕以)1,2; Xu, Zhe2,4; Yang B(杨波)1,2; Yang JY(杨家艳)1,2; Su, Yang5,6; Xia, Yuehan5,6; Ji KF(季凯帆)1,2 | |
发表期刊 | ASTROPHYSICAL JOURNAL |
2021-07 | |
卷号 | 915期号:2 |
DOI | 10.3847/1538-4357/ac01d5 |
产权排序 | 第1完成单位 |
收录类别 | SCI |
摘要 | The full-Sun corona is now imaged every 12 s in extreme ultraviolet (EUV) passbands by Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), whereas it is only observed several times a day at X-ray wavelengths by Hinode/X-Ray Telescope (XRT). In this paper, we apply a deep-learning method, i.e., the convolution neural network (CNN), to establish data-driven models to generate full-Sun X-ray images in XRT filters from AIA EUV images. The CNN models are trained using a number of data pairs of AIA six-passband (171, 193, 211, 335, 131, and 94 angstrom) images and the corresponding XRT images in three filters: Al_mesh, Ti_poly, and Be_thin. It is found that the CNN models predict X-ray images in good consistency with the corresponding well-observed XRT data. In addition, the purely data-driven CNN models are better than the conventional analysis method of the coronal differential emission measure (DEM) in predicting XRT-like observations from AIA data. Therefore, under conditions where AIA provides coronal EUV data well, the CNN models can be applied to fill the gap in limited full-Sun coronal X-ray observations and improve pool-observed XRT data. It is also found that DEM inversions using AIA data and our deep-learning-predicted X-ray data jointly are better than those using AIA data alone. This work indicates that deep-learning methods provide the opportunity to study the Sun based on virtual solar observation in future. |
资助项目 | National Key R&D Program of China[2019YFA0405000] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11633008] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U2031140] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11873088] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[12073072] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11933009] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11873027] ; CAS Light of West China Program ; Open Research Program of the Key Laboratory of Solar Activity of Chinese Academy of Sciences[KLSA202005] ; CAS program[QYZDJ-SSW-SLH012] |
项目资助者 | National Key R&D Program of China[2019YFA0405000] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11633008, U2031140, 11873088, 12073072, 11933009, 11873027] ; CAS Light of West China Program ; Open Research Program of the Key Laboratory of Solar Activity of Chinese Academy of Sciences[KLSA202005] ; CAS program[QYZDJ-SSW-SLH012] |
语种 | 英语 |
学科领域 | 天文学 ; 太阳与太阳系 ; 太阳物理学 ; 计算机科学技术 ; 人工智能 ; 计算机应用 |
文章类型 | Article |
出版者 | IOP PUBLISHING LTD |
出版地 | TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND |
ISSN | 0004-637X |
URL | 查看原文 |
WOS记录号 | WOS:000672939200001 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | ERUPTIONS ; JETS |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/24453 |
专题 | 太阳物理研究组 抚仙湖太阳观测和研究基地 天文技术实验室 |
通讯作者 | Hong JC(洪俊超); Liu H(刘辉); Ji KF(季凯帆) |
作者单位 | 1.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, People's Republic of China; [email protected], [email protected], [email protected]; 2.Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing, 100012, People's Republic of China; 3.Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Science, Beijing 100012, People's Republic of China; 4.Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, People's Republic of China; 5.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, People's Republic of China; 6.School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, People's Republic of China |
第一作者单位 | 中国科学院云南天文台 |
通讯作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | Hong JC,Liu H,Bi Y,et al. Mapping Solar X-Ray Images from SDO/AIA EUV Images by Deep Learning[J]. ASTROPHYSICAL JOURNAL,2021,915(2). |
APA | Hong JC.,Liu H.,Bi Y.,Xu, Zhe.,Yang B.,...&Ji KF.(2021).Mapping Solar X-Ray Images from SDO/AIA EUV Images by Deep Learning.ASTROPHYSICAL JOURNAL,915(2). |
MLA | Hong JC,et al."Mapping Solar X-Ray Images from SDO/AIA EUV Images by Deep Learning".ASTROPHYSICAL JOURNAL 915.2(2021). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Mapping Solar X-Ray (1992KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论