YNAO OpenIR  > 太阳物理研究组
Mapping Solar X-Ray Images from SDO/AIA EUV Images by Deep Learning
Hong JC(洪俊超)1,2,3; Liu H(刘辉)1,2; Bi Y(毕以)1,2; Xu, Zhe2,4; Yang B(杨波)1,2; Yang JY(杨家艳)1,2; Su, Yang5,6; Xia, Yuehan5,6; Ji KF(季凯帆)1,2
发表期刊ASTROPHYSICAL JOURNAL
2021-07
卷号915期号:2
DOI10.3847/1538-4357/ac01d5
产权排序第1完成单位
收录类别SCI
摘要

The full-Sun corona is now imaged every 12 s in extreme ultraviolet (EUV) passbands by Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), whereas it is only observed several times a day at X-ray wavelengths by Hinode/X-Ray Telescope (XRT). In this paper, we apply a deep-learning method, i.e., the convolution neural network (CNN), to establish data-driven models to generate full-Sun X-ray images in XRT filters from AIA EUV images. The CNN models are trained using a number of data pairs of AIA six-passband (171, 193, 211, 335, 131, and 94 angstrom) images and the corresponding XRT images in three filters: Al_mesh, Ti_poly, and Be_thin. It is found that the CNN models predict X-ray images in good consistency with the corresponding well-observed XRT data. In addition, the purely data-driven CNN models are better than the conventional analysis method of the coronal differential emission measure (DEM) in predicting XRT-like observations from AIA data. Therefore, under conditions where AIA provides coronal EUV data well, the CNN models can be applied to fill the gap in limited full-Sun coronal X-ray observations and improve pool-observed XRT data. It is also found that DEM inversions using AIA data and our deep-learning-predicted X-ray data jointly are better than those using AIA data alone. This work indicates that deep-learning methods provide the opportunity to study the Sun based on virtual solar observation in future.

资助项目National Key R&D Program of China[2019YFA0405000] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11633008] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U2031140] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11873088] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[12073072] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11933009] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11873027] ; CAS Light of West China Program ; Open Research Program of the Key Laboratory of Solar Activity of Chinese Academy of Sciences[KLSA202005] ; CAS program[QYZDJ-SSW-SLH012]
项目资助者National Key R&D Program of China[2019YFA0405000] ; Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11633008, U2031140, 11873088, 12073072, 11933009, 11873027] ; CAS Light of West China Program ; Open Research Program of the Key Laboratory of Solar Activity of Chinese Academy of Sciences[KLSA202005] ; CAS program[QYZDJ-SSW-SLH012]
语种英语
学科领域天文学 ; 太阳与太阳系 ; 太阳物理学 ; 计算机科学技术 ; 人工智能 ; 计算机应用
文章类型Article
出版者IOP PUBLISHING LTD
出版地TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
ISSN0004-637X
URL查看原文
WOS记录号WOS:000672939200001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]ERUPTIONS ; JETS
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/24453
专题太阳物理研究组
抚仙湖太阳观测和研究基地
天文技术实验室
通讯作者Hong JC(洪俊超); Liu H(刘辉); Ji KF(季凯帆)
作者单位1.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, People's Republic of China; [email protected], [email protected], [email protected];
2.Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing, 100012, People's Republic of China;
3.Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Science, Beijing 100012, People's Republic of China;
4.Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, People's Republic of China;
5.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, People's Republic of China;
6.School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
第一作者单位中国科学院云南天文台
通讯作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
Hong JC,Liu H,Bi Y,et al. Mapping Solar X-Ray Images from SDO/AIA EUV Images by Deep Learning[J]. ASTROPHYSICAL JOURNAL,2021,915(2).
APA Hong JC.,Liu H.,Bi Y.,Xu, Zhe.,Yang B.,...&Ji KF.(2021).Mapping Solar X-Ray Images from SDO/AIA EUV Images by Deep Learning.ASTROPHYSICAL JOURNAL,915(2).
MLA Hong JC,et al."Mapping Solar X-Ray Images from SDO/AIA EUV Images by Deep Learning".ASTROPHYSICAL JOURNAL 915.2(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Mapping Solar X-Ray (1992KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hong JC(洪俊超)]的文章
[Liu H(刘辉)]的文章
[Bi Y(毕以)]的文章
百度学术
百度学术中相似的文章
[Hong JC(洪俊超)]的文章
[Liu H(刘辉)]的文章
[Bi Y(毕以)]的文章
必应学术
必应学术中相似的文章
[Hong JC(洪俊超)]的文章
[Liu H(刘辉)]的文章
[Bi Y(毕以)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Mapping Solar X-Ray Images from SDO_AIA EUV Images by Deep Learning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。