YNAO OpenIR  > 南方基地
Deep learning for strong lensing search: tests of the convolutional neural networks and new candidates from KiDS DR3
He, Zizhao1; Er, Xinzhong1; Long Q(龙潜)2; Liu, Dezi1,3; Liu, Xiangkun1; Li, Ziwei1; Liu, Yun1; Deng, Wenqaing1; Fan, Zuhui1
发表期刊MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
2020-09-01
卷号497期号:1页码:556-571
DOI10.1093/mnras/staa1917
产权排序第2完成单位
收录类别SCI
关键词gravitational lensing: strong methods: statistical galaxies:elliptical and lenticular, cD
摘要

Convolutional neural networks have been successfully applied in searching for strong lensing systems, leading to discoveries of new candidates from large surveys. On the other hand, systematic investigations about their robustness are still lacking. In this paper, we first construct a neutral network, and apply it to r-band images of luminous red galaxies (LRGs) of the Kilo Degree Survey (KiDS) Data Release 3 to search for strong lensing systems. We build two sets of training samples, one fully from simulations, and the other one using the LRG stamps from KiDS observations as the foreground lens images. With the former training sample, we find 48 high probability candidates after human inspection, and among them, 27 are newly identified. Using the latter training set, about 67 per cent of the aforementioned 48 candidates are also found, and there are 11 more new strong lensing candidates identified. We then carry out tests on the robustness of the network performance with respect to the variation of PSF. With the testing samples constructed using PSF in the range of 0.4-2 times of the median PSF of the training sample, we find that our network performs rather stable, and the degradation is small. We also investigate how the volume of the training set can affect our network performance by varying it from 0.1 to 0.8 million. The output results are rather stable showing that within the considered range, our network performance is not very sensitive to the volume size.

资助项目NSFC[11933002] ; NSFC[11773074] ; NSFC[11803028] ; YNUGrant[C76220100008] ; CAS Interdisciplinary Innovation Team
项目资助者NSFC[11933002, 11773074, 11803028] ; YNUGrant[C76220100008] ; CAS Interdisciplinary Innovation Team
语种英语
学科领域天文学 ; 星系与宇宙学 ; 计算机科学技术 ; 人工智能
文章类型Article
出版者OXFORD UNIV PRESS
出版地GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
ISSN0035-8711
URL查看原文
WOS记录号WOS:000574919600038
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]KILO-DEGREE SURVEY ; GRAVITATIONAL LENSES ; GALAXY ; CLASSIFICATION ; SUBSTRUCTURE ; CONSTRAINTS ; EVOLUTION
引用统计
被引频次:26[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/23833
专题南方基地
通讯作者He, Zizhao; Long Q(龙潜); Fan, Zuhui
作者单位1.South-Western Institute for Astronomy Research, Yunnan University, Kunming 650500, P. R. China
2.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, P. R. China
3.The Shanghai Key Lab for Astrophysics, Shanghai Normal University, Shanghai 200234, P. R. China
通讯作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
He, Zizhao,Er, Xinzhong,Long Q,et al. Deep learning for strong lensing search: tests of the convolutional neural networks and new candidates from KiDS DR3[J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,2020,497(1):556-571.
APA He, Zizhao.,Er, Xinzhong.,Long Q.,Liu, Dezi.,Liu, Xiangkun.,...&Fan, Zuhui.(2020).Deep learning for strong lensing search: tests of the convolutional neural networks and new candidates from KiDS DR3.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,497(1),556-571.
MLA He, Zizhao,et al."Deep learning for strong lensing search: tests of the convolutional neural networks and new candidates from KiDS DR3".MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 497.1(2020):556-571.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Deep learning for st(5329KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Zizhao]的文章
[Er, Xinzhong]的文章
[Long Q(龙潜)]的文章
百度学术
百度学术中相似的文章
[He, Zizhao]的文章
[Er, Xinzhong]的文章
[Long Q(龙潜)]的文章
必应学术
必应学术中相似的文章
[He, Zizhao]的文章
[Er, Xinzhong]的文章
[Long Q(龙潜)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Deep learning for strong lensing search_ tests of the convolutional neural networks and new candidates from KiDS DR3.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。