Using deep Residual Networks to search for galaxy-Ly alpha emitter lens candidates based on spectroscopic selection | |
Li R(李瑞)1,2,3,4; Shu, Yiping5,6; Su, Jianlin7; Feng HC(封海成)1,2,3,4; Zhang GB(张国宝)1,2,3,4; Wang JC(王建成)1,2,3,4; Liu HT(刘洪涛)1,2,3,4 | |
发表期刊 | MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY |
2019 | |
卷号 | 482期号:1页码:313-320 |
DOI | 10.1093/mnras/sty2708 |
产权排序 | 第1完成单位 |
收录类别 | SCI ; EI |
关键词 | gravitational lensing: strong galaxies: structure |
摘要 | More than 100 galaxy-scale strong gravitational lens systems have been found by searching for the emission lines coming from galaxies with redshifts higher than the lens galaxies. Based on this spectroscopic-selection method, we introduce the deep Residual Networks (ResNet; a kind of deep Convolutional Neural Networks) to search for the galaxy-Ly alpha emitter (LAE) lens candidates by recognizing the Ly alpha emission lines coming from high- redshift galaxies (2 < z < 3) in the spectra of early-type galaxies (ETGs) at middle redshift (z similar to 0.5). The spectra of the ETGs come from the Data Release 12 (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III (SDSS-III). In this paper, we first build a 28 layers ResNet model, and then artificially synthesize 150 000 training spectra, including 140 000 spectra without Ly alpha lines and 10 000 ones with Ly alpha lines, to train the networks. After 20 training epochs, we obtain a near-perfect test accuracy at 0.995 4. The corresponding loss is 0.002 8 and the completeness is 93.6 per cent. We finally apply our ResNet model to our predictive data with 174 known lens candidates. We obtain 1232 hits including 161 of the 174 known candidates (92.5 per cent discovery rate). Apart from the hits found in other works, our ResNet model also find 536 new hits. We then perform several subsequent selections on these 536 hits and present five most believable lens candidates. |
资助项目 | National Natural Science Foundation of China[11603032] ; National Natural Science Foundation of China[11333008] ; National Natural Science Foundation of China[11573060] ; National Natural Science Foundation of China[11661161010] ; 973 program[2015CB857003] ; Royal Society - K.C. Wong International Fellowship[NF170995] ; Chinese Academy of Science Pioneer Hundred Talent Program[Y7CZ181001] |
项目资助者 | National Natural Science Foundation of China[11603032, 11333008, 11573060, 11661161010] ; 973 program[2015CB857003] ; Royal Society - K.C. Wong International Fellowship[NF170995] ; Chinese Academy of Science Pioneer Hundred Talent Program[Y7CZ181001] |
语种 | 英语 |
学科领域 | 天文学 ; 天体物理学 ; 高能天体物理学 ; 星系与宇宙学 |
文章类型 | Article |
出版者 | OXFORD UNIV PRESS |
出版地 | GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND |
ISSN | 0035-8711 |
URL | 查看原文 |
WOS记录号 | WOS:000454575300024 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | ACS SURVEY ; AUTOMATIC DETECTION ; STELLAR ; SAMPLE |
EI入藏号 | 20221611995135 |
EI主题词 | Galaxies |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering - 711 Electromagnetic Waves |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/18809 |
专题 | 高能天体物理研究组 中国科学院天体结构与演化重点实验室 |
通讯作者 | Li R(李瑞) |
作者单位 | 1.Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, P. R. China 2.University of Chinese Academy of Sciences, Beijing, 100049, P. R. China 3.Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012, P. R. China 4.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, P. R. China 5.Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing, Jiangsu, 210008, China 6.Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 7.School of Mathematics, Sun Yat-sen University, Guangzhou, China |
第一作者单位 | 中国科学院云南天文台 |
通讯作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | Li R,Shu, Yiping,Su, Jianlin,et al. Using deep Residual Networks to search for galaxy-Ly alpha emitter lens candidates based on spectroscopic selection[J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,2019,482(1):313-320. |
APA | Li R.,Shu, Yiping.,Su, Jianlin.,Feng HC.,Zhang GB.,...&Liu HT.(2019).Using deep Residual Networks to search for galaxy-Ly alpha emitter lens candidates based on spectroscopic selection.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,482(1),313-320. |
MLA | Li R,et al."Using deep Residual Networks to search for galaxy-Ly alpha emitter lens candidates based on spectroscopic selection".MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 482.1(2019):313-320. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Using deep Residual (736KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论