YNAO OpenIR  > 高能天体物理研究组
Using deep Residual Networks to search for galaxy-Ly alpha emitter lens candidates based on spectroscopic selection
Li R(李瑞)1,2,3,4; Shu, Yiping5,6; Su, Jianlin7; Feng HC(封海成)1,2,3,4; Zhang GB(张国宝)1,2,3,4; Wang JC(王建成)1,2,3,4; Liu HT(刘洪涛)1,2,3,4
发表期刊MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
2019
卷号482期号:1页码:313-320
DOI10.1093/mnras/sty2708
产权排序第1完成单位
收录类别SCI ; EI
关键词gravitational lensing: strong galaxies: structure
摘要

More than 100 galaxy-scale strong gravitational lens systems have been found by searching for the emission lines coming from galaxies with redshifts higher than the lens galaxies. Based on this spectroscopic-selection method, we introduce the deep Residual Networks (ResNet; a kind of deep Convolutional Neural Networks) to search for the galaxy-Ly alpha emitter (LAE) lens candidates by recognizing the Ly alpha emission lines coming from high- redshift galaxies (2 < z < 3) in the spectra of early-type galaxies (ETGs) at middle redshift (z similar to 0.5). The spectra of the ETGs come from the Data Release 12 (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III (SDSS-III). In this paper, we first build a 28 layers ResNet model, and then artificially synthesize 150 000 training spectra, including 140 000 spectra without Ly alpha lines and 10 000 ones with Ly alpha lines, to train the networks. After 20 training epochs, we obtain a near-perfect test accuracy at 0.995 4. The corresponding loss is 0.002 8 and the completeness is 93.6 per cent. We finally apply our ResNet model to our predictive data with 174 known lens candidates. We obtain 1232 hits including 161 of the 174 known candidates (92.5 per cent discovery rate). Apart from the hits found in other works, our ResNet model also find 536 new hits. We then perform several subsequent selections on these 536 hits and present five most believable lens candidates.

资助项目National Natural Science Foundation of China[11603032] ; National Natural Science Foundation of China[11333008] ; National Natural Science Foundation of China[11573060] ; National Natural Science Foundation of China[11661161010] ; 973 program[2015CB857003] ; Royal Society - K.C. Wong International Fellowship[NF170995] ; Chinese Academy of Science Pioneer Hundred Talent Program[Y7CZ181001]
项目资助者National Natural Science Foundation of China[11603032, 11333008, 11573060, 11661161010] ; 973 program[2015CB857003] ; Royal Society - K.C. Wong International Fellowship[NF170995] ; Chinese Academy of Science Pioneer Hundred Talent Program[Y7CZ181001]
语种英语
学科领域天文学 ; 天体物理学 ; 高能天体物理学 ; 星系与宇宙学
文章类型Article
出版者OXFORD UNIV PRESS
出版地GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
ISSN0035-8711
URL查看原文
WOS记录号WOS:000454575300024
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]ACS SURVEY ; AUTOMATIC DETECTION ; STELLAR ; SAMPLE
EI入藏号20221611995135
EI主题词Galaxies
EI分类号461.4 Ergonomics and Human Factors Engineering - 711 Electromagnetic Waves
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/18809
专题高能天体物理研究组
中国科学院天体结构与演化重点实验室
通讯作者Li R(李瑞)
作者单位1.Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, P. R. China
2.University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
3.Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012, P. R. China
4.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, P. R. China
5.Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing, Jiangsu, 210008, China
6.Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
7.School of Mathematics, Sun Yat-sen University, Guangzhou, China
第一作者单位中国科学院云南天文台
通讯作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
Li R,Shu, Yiping,Su, Jianlin,et al. Using deep Residual Networks to search for galaxy-Ly alpha emitter lens candidates based on spectroscopic selection[J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,2019,482(1):313-320.
APA Li R.,Shu, Yiping.,Su, Jianlin.,Feng HC.,Zhang GB.,...&Liu HT.(2019).Using deep Residual Networks to search for galaxy-Ly alpha emitter lens candidates based on spectroscopic selection.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,482(1),313-320.
MLA Li R,et al."Using deep Residual Networks to search for galaxy-Ly alpha emitter lens candidates based on spectroscopic selection".MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 482.1(2019):313-320.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Using deep Residual (736KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li R(李瑞)]的文章
[Shu, Yiping]的文章
[Su, Jianlin]的文章
百度学术
百度学术中相似的文章
[Li R(李瑞)]的文章
[Shu, Yiping]的文章
[Su, Jianlin]的文章
必应学术
必应学术中相似的文章
[Li R(李瑞)]的文章
[Shu, Yiping]的文章
[Su, Jianlin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Using deep Residual Networks to search for galaxy-Ly α emitter lens candidates based on spectroscopic selection.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。