Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star | |
Arcavi, Iair1,2,3; Howell, D. Andrew1,3; Daniel Kasen4,5,6; LarsBildsten2,3; Griffin Hosseinzadeh1,3; CurtisMcCully1,3; Zheng Chuen Wong1,3; Sarah Rebekah Katz1,3; Avishay Gal-Yam7; Jesper Sollerman8; Francesco Taddia8; Giorgos Leloudas7,9; Christoffer Fremling8; Peter E. Nugent6,10; Assaf Horesh7,11; Kunal Mooley12; Clare Rumsey13; S.Bradley Cenko14,15; Melissa L. Graham6,16; Daniel A. Perley9,17; Ehud Nakar18; Nir J. Shaviv11; OmerBromberg18; Ken J. Shen6; Eran O. Ofek7; Yi Cao16,19; Xiaofeng Wang20; Fang Huang20; Liming Rui20; Tianmeng Zhang21,22; Wenxiong Li20; Zhitong Li20; Zhang JJ(张居甲)23,24; Stefano Valenti25; David Guevel1,3; Benjamin Shappee26; Christopher S. Kochanek27,28; Thomas W.-S. Holoien27,28; Alexei V. Filippenko6,29; Rob Fender12; Anders Nyholm8; Ofer Yaron7; Mansi M. Kasliwal30; Mark Sullivan31; Nadja Blagorodnova30; Richard S. Walters30; Ragnhild Lunnan30; Danny Khazov7; Igor Andreoni32,33,34; Russ R. Laher35; Nick Konidaris26; Przemek Wozniak36; Bue, Brian37 | |
发表期刊 | NATURE |
2017-11-09 | |
卷号 | 551期号:7679页码:210-+ |
DOI | 10.1038/nature24030 |
产权排序 | 第23完成单位 |
收录类别 | SCI ; EI |
摘要 | Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining(1). Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability(2-5). That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required. |
资助项目 | N/A |
项目资助者 | N/A |
语种 | 英语 |
学科领域 | 天文学 ; 恒星与银河系 |
文章类型 | Article |
出版者 | NATURE PUBLISHING GROUP |
出版地 | MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND |
ISSN | 0028-0836 |
URL | 查看原文 |
WOS记录号 | WOS:000414734200043 |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
关键词[WOS] | EXPANDING PHOTOSPHERE METHOD ; PULSATIONAL PAIR-INSTABILITY ; II SUPERNOVAE ; HIGH-REDSHIFT ; LIGHT CURVES ; LOW-RESOLUTION ; SKY SURVEY ; TELESCOPE ; GALAXIES ; SPECTROGRAPH |
EI入藏号 | 5266439 |
EI分类号 | 901Geobase: Related Topics |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/11893 |
专题 | 南方基地 中国科学院天体结构与演化重点实验室 |
通讯作者 | Arcavi, Iair |
作者单位 | 1.Las Cumbres Observatory, Goleta; CA; 93117, United States 2.Kavli Institute for Theoretical Physics, University of California, Santa Barbara; CA; 93106, United States 3.Department of Physics, University of California, Santa Barbara; CA; 93106, United States 4.Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley; CA; 94720, United States 5.Department of Physics, University of California, Berkeley; CA; 94720, United States 6.Department of Astronomy, University of California, Berkeley; CA; 94720-3411, United States 7.Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot; 76100, Israel 8.Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, Stockholm; SE-10691, Sweden 9.Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, Copenhagen; 2100, Denmark 10.Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley; CA; 94720, United States 11.Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem; 91904, Israel 12.Department of Physics, Astrophysics, University of Oxford, Denys Wilkinson Building, Oxford; OX1 3RH, United Kingdom 13.Astrophysics Group, Cavendish Laboratory, 19 J. J. Thomson Avenue, Cambridge; CB3 0HE, United Kingdom 14.Astrophysics Science Division, NASA Goddard Space Flight Center, Code 661, Greenbelt; MA; 20771, United States 15.Joint Space-Science Institute, University of Maryland, College Park, Maryland; 20742, United States+6 16.Department of Astronomy, University of Washington, Box 351580, Seattle; WA; 98195-1580, United States 17.Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool; L3 5RF, United Kingdom 18.Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel 19.EScience Institute, University of Washington, Box 351570, Seattle; WA; 98195-1580, United States 20.Physics Department and Tsinghua Center for Astrophysics, Tsinghua University, Beijing; 100084, China 21.Key Laboratory of Optical Astronomy, National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing; 100012, China 22.School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing; 101408, China 23.Yunnan Observatories, Chinese Academy of Sciences, Kunming; 650011, China 24.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Phoenix Mountain, East District, Kunming, Yunnan; 650216, China 25.Department of Physics, University of California, 1 Shields Avenue, Davis; CA; 95616, United States 26.Carnegie Observatories, 813 Santa Barbara Street, Pasadena; CA; 91101, United States 27.Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus; OH; 43210, United States 28.Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, 191 W. Woodruff Avenue, Columbus; OH; 43210, United States 29.Miller Institute for Basic Research in Science, University of California, Berkeley; CA; 94720, United States 30.Cahill Center for Astrophysics, California Institute of Technology, Pasadena; CA; 91125, United States 31.Department of Physics and Astronomy, University of Southampton, Southampton; SO17 1BJ, United Kingdom 32.Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, VIC; 3122, Australia 33.ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Australia 34.Australian Astronomical Observatory. PO Box 915, North Ryde; NSW; 1670, Australia 35.Spitzer Science Center, California Institute of Technology, MS 314-6, Pasadena; CA; 91125, United States 36.Space and Atmospheric Sciences Group, Mail Stop D466, Los Alamos National Laboratory, Los Alamos; NM; 87545, United States 37.Jet Propulsion Laboratory, California Institute of Technology, Pasadena; CA; 91109, United States |
推荐引用方式 GB/T 7714 | Arcavi, Iair,Howell, D. Andrew,Daniel Kasen,et al. Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star[J]. NATURE,2017,551(7679):210-+. |
APA | Arcavi, Iair.,Howell, D. Andrew.,Daniel Kasen.,LarsBildsten.,Griffin Hosseinzadeh.,...&Bue, Brian.(2017).Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star.NATURE,551(7679),210-+. |
MLA | Arcavi, Iair,et al."Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star".NATURE 551.7679(2017):210-+. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Energetic eruptions (2001KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论