NUMERICAL INTEGRAL OF RESISTANCE COEFFICIENTS IN DIFFUSION | |
Zhang QS(张钱生)1,2,3 | |
发表期刊 | ASTROPHYSICAL JOURNAL |
2017-01-10 | |
卷号 | 834期号:2页码:132- |
DOI | 10.3847/1538-4357/834/2/132 |
产权排序 | 第1完成单位 |
收录类别 | SCI |
关键词 | Diffusion Stars: Abundances Stars: Interiors |
摘要 | The resistance coefficients in the screened Coulomb potential of stellar plasma are evaluated to high accuracy. I have analyzed the possible singularities in the integral of scattering angle. There are possible singularities in the case of an attractive potential. This may result in a problem for the numerical integral. In order to avoid the problem, I have used a proper scheme, e.g., splitting into many subintervals where the width of each subinterval is determined by the variation of the integrand, to calculate the scattering angle. The collision integrals are calculated by using Romberg's method, therefore the accuracy is high (i.e., similar to 10(-12)). The results of collision integrals and their derivatives for -7 <= psi <= 5 are listed. By using Hermite polynomial interpolation from those data, the collision integrals can be obtained with an accuracy of 10(-10). For very weakly coupled plasma (psi >= 4.5), analytical fittings for collision integrals are available with an accuracy of 10(-11). I have compared the final results of resistance coefficients with other works and found that, for a repulsive potential, the results are basically the same as others'; for an attractive potential, the results in cases of intermediate and strong coupling show significant differences. The resulting resistance coefficients are tested in the solar model. Comparing with the widely used models of Cox et al. and Thoul et al., the resistance coefficients in the screened Coulomb potential lead to a slightly weaker effect in the solar model, which is contrary to the expectation of attempts to solve the solar abundance problem. |
资助项目 | National Natural Science Foundation of China[11303087] ; Chinese Academy of Sciences (Light of West China Program) ; Chinese Academy of Sciences (Youth Innovation Promotion Association) |
项目资助者 | National Natural Science Foundation of China[11303087] ; Chinese Academy of Sciences (Light of West China Program) ; Chinese Academy of Sciences (Youth Innovation Promotion Association) |
语种 | 英语 |
学科领域 | 天文学 ; 恒星与银河系 ; 恒星物理学 |
文章类型 | Article |
出版者 | IOP PUBLISHING LTD |
出版地 | TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND |
ISSN | 0004-637X |
URL | 查看原文 |
归档日期 | 2017-01-18 |
WOS记录号 | WOS:000400138300006 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | THERMONUCLEAR REACTION-RATES ; SOLAR CONVECTION ZONE ; OF-STATE TABLES ; ELEMENT DIFFUSION ; COMPOSITION GRADIENTS ; REVISED ABUNDANCES ; STELLAR PLASMAS ; MODELS ; HELIUM ; OPACITIES |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/10177 |
专题 | 恒星物理研究组 中国科学院天体结构与演化重点实验室 |
通讯作者 | Zhang QS(张钱生) |
作者单位 | 1.Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, P. R. China 2.Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012, P. R. China 3.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, P. R. China |
第一作者单位 | 中国科学院云南天文台 |
通讯作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | Zhang QS. NUMERICAL INTEGRAL OF RESISTANCE COEFFICIENTS IN DIFFUSION[J]. ASTROPHYSICAL JOURNAL,2017,834(2):132-. |
APA | Zhang QS.(2017).NUMERICAL INTEGRAL OF RESISTANCE COEFFICIENTS IN DIFFUSION.ASTROPHYSICAL JOURNAL,834(2),132-. |
MLA | Zhang QS."NUMERICAL INTEGRAL OF RESISTANCE COEFFICIENTS IN DIFFUSION".ASTROPHYSICAL JOURNAL 834.2(2017):132-. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
NUMERICAL INTEGRAL O(701KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang QS(张钱生)]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang QS(张钱生)]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang QS(张钱生)]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论